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Abstract

This survey has the objective of reviewing research and development of wing-in-ground effect technology. Starting with

definitions of the phenomenon and the craft which takes advantage of the ground effect (GE), the history and perspectives

of the technology, specific vehicles and projects, and areas of application are covered. Special attention is paid to GE

aerodynamics, its mathematical modeling and the stability of longitudinal motion. Also briefly discussed are issues of

motion control, structural design, materials and economics. Covered in more detail are matters related to rules of

classification, safety and certification. Conclusions are followed by a bibliography, including about 769 entries.

r 2006 Elsevier Ltd. All rights reserved.
Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

1.1. Definitions of the ground effect and wing-in-ground effect vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . 213

1.2. Different names of WIG effect craft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

1.3. Distinctions from existing airborne and waterborne vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

2. A brief history of WIG effect vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

2.1. First inventions and applications based on the GE technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

2.2. Projects and vehicles worldwide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

2.3. Russian ekranoplans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

3. Recent projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

3.1. Projects and prototypes produced in China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

3.2. Projects and vehicles developed in Germany . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219

3.3. New vehicles and projects in Russia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
3.3.1. Marine Passenger Ekranoplans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

3.3.2. Amphistar-Aquaglide series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

3.3.3. Transport Amphibious Platforms (TAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
3.4. Projects and vehicles in the USA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

3.5. Other projects and developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
3.5.1. Sea-Bus project (European Community, surface-piercing hydrofoil-controlled WIG effect

configurations) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

3.5.2. Hydrofret concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
e front matter r 2006 Elsevier Ltd. All rights reserved.

erosci.2006.10.001

7 812 714 2923.

esses: kvr@smtu.ru, kvrxmas@yahoo.com (K.V. Rozhdestvensky).

www.elsevier.com/locate/paerosci
dx.doi.org/10.1016/j.paerosci.2006.10.001
mailto:kvr@smtu.ru,
mailto:kvrxmas@yahoo.com


ARTICLE IN PRESS
K.V. Rozhdestvensky / Progress in Aerospace Sciences 42 (2006) 211–283212
3.5.3. Multihulls with aerodynamic unloading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

3.5.4. New Japanese WISE craft developments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

3.5.5. RotorWIG [34]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

3.5.6. Korea WIG project [35] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
4. Areas of application of WIG effect craft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

4.1. Civil applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
4.1.1. Search-and-rescue operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

4.1.2. Global Sea Rescue System [38] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

4.1.3. Horizontal launch of the aerospace plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227

4.1.4. Other civil applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.2. Naval applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.2.1. Anti-surface warfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

4.2.2. Anti-submarine warfare. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

4.2.3. Amphibious warfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

4.2.4. Sea lift. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

4.2.5. Nuclear warfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

4.2.6. Reconnaissance and Patrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

4.2.7. ‘‘Wingship’’ naval missions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
5. Classification of WIG effect craft and some design parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

5.1. Classification of WIG effect craft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
5.1.1. By aerodynamic configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

5.1.2. By altitude range: A, B and C types (IMO classification) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

5.1.3. By physics of the GE phenomena. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
5.2. Some design parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

6. Aerodynamic aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6.1. Lift, drag and their ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6.2. Influence of geometry and aerodynamic configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

6.3. Influence of endplates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

6.4. Influence of the planform and the aspect ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

6.5. Influence of waves in cruising flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

6.6. Compressibility effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

6.7. Aero-elastic effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

6.8. Peculiarities of the aerodynamics of formation flight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

7. Mathematical modeling of aerodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

8. Stability of longitudinal motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

9. Takeoff of WIG effect vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

9.1. Lift coefficient at takeoff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

9.2. Liftoff devices and solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

9.3. Power augmentation for takeoff and cruising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
9.3.1. PAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

9.3.2. USB PARWIG concept. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
10. Structural design, weights and materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

11. Control systems [12,117]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

12. Economics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

13. Certification of WIG effect vehicles [119–122] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

13.1. Ship or airplane?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

13.2. Some hydrofoil experience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

13.3. Progress in the development of regulations for WIG effect vehicles . . . . . . . . . . . . . . . . . . . . . . . . . . 259

13.4. Main features of the ‘‘Interim Guidelines for Wing-In-Ground (WIG) Craft’’ . . . . . . . . . . . . . . . . . . 260

13.5. NAV Sub-Committee amendments to the COLREGs-72 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

13.6. Emerging requirements on knowledge, skill and training for officers on WIG craft . . . . . . . . . . . . . . . 261

13.7. First rules of classification and safety for small commercial ekranoplan . . . . . . . . . . . . . . . . . . . . . . . 261

14. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

14.1. Technical feasibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

14.2. Technical problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

14.3. Aerodynamic configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262



ARTICLE IN PRESS
K.V. Rozhdestvensky / Progress in Aerospace Sciences 42 (2006) 211–283 213
14.4. Final conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

Further reading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
1. Introduction

This survey is dedicated to the memory of a
distinguished Russian engineer Rostislav E. Alex-
eyev who was the first in the world to develop the
largest ground-effect (GE) machine—Ekranoplan.
His first creation, the top secret project KM became
known to the western world as the Caspian Sea

Monster because of hovering movements of this
mammoth craft over the Caspian Sea. The KM
became the prototype for many other advanced
marine vehicles utilizing favorable influence of the
underlying surface upon aerodynamics and eco-
nomics, Fig. 1.

The story of the Caspian Sea Monster has
acquired a publicity, which far surpassed that of
the Loch Ness Monster. These two tales may appear
similar to an uninformed reader. In fact, loch means
a lake in Gaelic, and the Caspian Sea is often viewed
as an enormous lake. Both monsters were huge and
tended to avoid the human eye. Actually, only a few

lucky ones saw them ‘‘in flesh’’, and both had to be
identified from photos.

With the end of the Cold War, the mystery of the
Caspian Sea Monster exists no more. But the
breathtaking technology behind the development
of large flying ships taking advantage of the surface
effect at aviation speeds may revolutionize the
future fast sea transportation.
1.1. Definitions of the ground effect and wing-in-

ground effect vehicles

In what follows ‘‘the ground effect (GE)’’ is
understood as an increase of the lift-to-drag ratio of
a lifting system at small relative distances from an
underlying surface [1]. More general definitions may
Fig. 1. The KM dubbed ‘‘The Caspian Sea Monster’’.
be introduced, e.g. Reeves defines the GE as a

phenomenon of aerodynamic, aeroelastic and aero-

acoustic impacts on platforms flying in close proxi-

mity to an underlying surface [2]. The term ‘‘extreme
ground effect (EGE)’’ implies a range of relative
ground clearances of 10% of the chord of the main
wing or less [3].

A wing-in-ground (WIG) effect vehicle can be
defined as a heavier than air vehicle with an engine,
which is designed to operate in proximity to an
underlying surface for efficient utilization of the GE.

1.2. Different names of WIG effect craft

At present many terms exist to designate such a
craft. The names ekranoplan (from the French word
ékran ¼ screen), nizkolet (low flying vehicle), ekrano-

let (vehicle able to fly in and out of GE) originated
from Russia (R. Alexeev) [4]. WIG is a popular
abbreviation of WIG effect vehicle. WISES (intro-
duced by S. Kubo, Japan) spells as Wing-In-Surface
Effect Ship. GEM (Bertelson, USA) stands for GE

Machine. The terms Flaircraft, Tandem-Aerofoil Boat

were introduced by Günther Jörg (Germany). The
Lippisch craft derivatives developed by Hanno
Fischer (Germany) are called Airfish. The technology
of air-cushion-assisted takeoff, applied by Fischer,
got an imprint in the term Hoverwing. The vehicles of
Techno Trans (Germany) are known as Hydrow-

ing(s). S. Hooker (Aerocon, USA) coined the term
Wingship designating WIG vehicles of mammoth size
[5] As per Hooker, this term ‘‘designates very
specifically a ship-sized winged craft that ordinarily
takes off from and lands in water and which flies at
high speed’’. The term RAM Wing applies to the
WIG vehicles for which the main contribution to the
lift is due to stagnated flow under the main wing. A
WIG vehicle permanently using power augmentation

to enhance the dynamic lift is sometimes called
PARWIG.

1.3. Distinctions from existing airborne and

waterborne vehicles

The WIG effect vehicle differs from a conventional

airplane by the relatively small aspect ratio of the
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Fig. 2. WIG versus airplane (KM versus AN-225 ‘‘Mria’’).

Fig. 3. Kaario’s Aerosledge No. 8.

Fig. 4. Warner’s ‘‘Compressor’’ airplane.
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main wing, endplates (floats), special takeoff and
alighting gear (takeoff or liftoff aids). The distinc-
tion from a conventional airplane can be seen from
Fig. 2, comparing the KM ekranoplan with the
AN-225 (‘‘Mria’’) aircraft of similar size and weight.

The Soviet Military encyclopedia adds to this list
of distinctions of the ekranoplan the ‘‘raised
location of the horizontal tail unit, beyond the
limits of the influence of the ground and the wing
wake, to ensure longitudinal stability’’ [6]. Note that
the latter feature may degenerate or completely
vanish from some configurations such as ‘‘tandem’’,
‘‘flying wing’’ or ‘‘composite wing’’. Contrary to the
aircraft the WIG vehicles do not have to be
hermetic. Conventional seaplanes versus WIGs
have: much larger aspect ratio and higher position-
ing of the main wing with respect to the hull, i.e. are
less subject to the action of GE. Seaplanes (except
Bartini’s VVA-14) are of airplane aerodynamic
configuration. As compared to the hovercraft which
is borne by a static air cushion, the WIG is
supported by a dynamic air cushion that forms
under the lifting wings at large speeds (RAM or
chord-dominated GE) or/and by the wing-generated
lift enhanced due to reduction of the down wash
near the ground (span-dominated GE). While
sharing some features with high-powered planing
boats, the WIG is supported by dynamic pressure of
the air whereas the planing boat is supported by the
dynamic pressure of the water.

2. A brief history of WIG effect vehicles

2.1. First inventions and applications based on the

GE technology

The earliest practical albeit unintentional utiliza-
tion of GE belongs to the Wright brothers. The
aviators encountered GE phenomena under the
disguise of what was called a ‘‘cushioning effect’’ or
a ‘‘pancake’’ landing. The transatlantic service of the
seaplane Dornier DO-X demonstrated augmentation
of the payload and range (1930–1931). Improved ride
and handling qualities of conventional military
aircraft (F105D, B-58, Avro Vulkan) even at
distances exceeding five span lengths above the
ground were regularly experienced, see [5].

The first purposefully designed GE vehicle was
due to Kaario (Finland, 1935) [7]. His ‘‘Aerosledge
No. 8’’ featured a small-aspect ratio wing, leaning
upon the skis (skegs) and a swiveling wing, directing
the air propeller jet under the main wing. To
provide additional static stability margin Kaario
added two longitudinal rear beams with small
stabilizing surfaces [4], Fig. 3.

A precursor of the power augmentation system
can be found in the Warner ‘‘compressor’’ airplane
(USA, 1928) [4], Fig. 4. The design was based on a
canard configuration and included two powerful
fans forcing the air under a dome-like bottom of the
vehicle. The Warner was the first to use separate
takeoff and cruise engines.

The ram-wing concept was implemented by
Troeng (Sweden, 30s) [4], Fig. 5. Particular features
of Troeng’s rectangular-wing vehicles were: (1)
enhanced static stability during takeoff with the
help of special floats, (2) use of a screw propeller, (3)
use of a small hydrofoil at the trailing edge of the
ram wing to ensure longitudinal stability in the
design cruising mode.
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Fig. 5. Troeng’s ram wing.

Fig. 6. Ground-effect machine designed by Bertelson.
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2.2. Projects and vehicles worldwide

Further extension of Kaario’s idea to combine
features of WIG effect and air-cushion vehicles was
implemented in Bertelson’s (USA, late 50s–early 60s)
GEMs [4], Fig. 6. Similar to Kaario’s design, the
GEMs had a single engine for takeoff and cruise.
They took off and cruised by means of an air cushion
generated by deflecting the propeller air stream under
off the main wing. Stabilization of the vehicle was
provided by a number of control surfaces: small
forward flaps, mounted right after the propeller, and
high-mounted albeit small tail plane.

Lockheed had been involved in WIG craft
development since 1960. In 1963 a small two-seat
boat with a wing fitted with endplates was launched
(Koryagin). It had two bow hydroskis for better
longitudinal stability [4]. A similar cutter ‘‘Clipper’’
was built in 1965. Beside cutters, Lockheed is
known to have studied a large WIG effect flying
catamaran. The vehicle was to be stabilized and
controlled by flap ailerons and a tail unit, compris-
ing of vertical and horizontal rudders. The cargo
was to be transported in the hulls and the wing.

Later, Lockheed-Georgia (see DARPA Report
[8]) studied a 1362 million lb (620 tons) wingship,
which was designed as a logistics transport capable
of transporting about 200 tons over 4000 nautical
miles (7410 km) over an open ocean in a sea state 3
environment at a cruise speed of 0.40 Mach. PAR
was provided for takeoff and landing with engines
cantilevered from the sides of the forward fuselage.
The twin vertical and all-movable horizontal
empennage is supported from the wing trailing edge
by twin tail booms. A single, V-shaped hydrofoil
was incorporated into the Lockheed wingship
design for landing purposes only. The foil had a
span of only 15.2 ft (4.64m) and a chord of 7.6 ft
(2.3m). The hydrofoil is extended at 150 ft/s (89
knots, i.e. about 165 km/h). Darpa report also
describes Northrop Wingship 1.6M and Douglas
Aircraft Wingship-S. The former vehicle has the
following main characteristics: TOW ¼ 1.6mln lb
(725 tons), length of 282 ft (86m), wing span
of 141.4 ft (43m), aspect ratio 2.6, wing loading
206 lb/sq. ft (about 1000 kg/sqm). Structural and
empty weight fractions of the vehicle were 32% and
47% correspondingly.

The 2 million lb (910 tons) Douglas Aircraft
Wingship-S (1977) was supposed to use the power
augmented ram (PAR) wing concept. The underw-
ing cavity pressure was provided from the exhaust
of the four canard-mounted engines. In the DAW-S
the PAR was used at all speeds and the forward
engines were fixed at a certain angle. The underwing
pressure is sustained by plain flaps at the rear of the
wing and a pressurized inflatable skirt extending
vertically along the wing tips. As per the DARPA
report, the DAW-S takes off and lands vertically
at zero forward speed, thus experiencing no
hydrodynamic forces due to forward motion. The
wing is mounted flush with the bottom of the
fuselage to prevent wave impact. The fuselage,
therefore, is similar to the conventional land plane
design and has no seaplane keel, chines or deadrise
contours and is designed for floating loads only. A
substantial ski structure is included under the aft
fuselage to assist in the vehicle longitudinal trim
during takeoff and landing. A conventional T-tail
empennage also maintains trim and stability at
forward speeds. Quite a unique craft was developed
in the 60s by the Swiss engineer Weiland within his
contract with the US company ‘‘West Coast’’ [4].
Weiland vehicles comprise a twin-hull structure with
two large wings of aspect ratio 5 configured in a
tandem. The ‘‘Small Weilandcraft’’ of 4.3 tons was
to be followed by a 1000—ton ‘‘Large Weiland-
craft’’ with length in excess of 200m and width of
more than 150m, Fig. 7. Sufficient attention was
attached to providing efficient takeoff.

As an alternative to hydroskis, Weiland proposed
power augmentation. He also introduced special
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Fig. 7. Weiland’s ‘‘Large Weilandcraft’’ Project.

Fig. 8. TAF VIII-1 tandem vehicle (Günther Jörg).

Fig. 9. Lippisch X-114.

Fig. 10. Kawasaki KAG-3 craft (S. Ando).
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inflatable shells on the bottoms of the hulls to
reduce the impact of waves during takeoff. The
‘‘Small Weilandcraft’’ crashed during the tests
supposedly due to lack of static stability. Beginning
from 1963 Günther Jörg in Germany designed and
built a series of ground-effect vehicles (TAF ¼
Tandem-Airfoil-Flairboat) based on the idea of
arranging two stubby wings in tandem [9], Fig. 8.
He was able to ensure static stability and controll-
ability of the vehicle in longitudinal motion by a
proper ‘‘tuning’’ of parameters of the forward and
rear wings and their design pitch angles. Thereby
the longitudinal steering control is reduced to
throttle control only.

Lippisch—a German aerodynamicist, who
worked for the US company Collins Radio—
introduced new WIG effect vehicles based on the
reverse delta wing planform. In 1963 he built his
first X-112 ‘‘Aerofoil Boat’’. This and the following
Lippisch craft had a moderate aspect ratio in excess
of 3 and inverse dihedral of the main wing enabling
them to elevate the hull with respect to the water
surface. The reported lift-to-drag ratios were of the
order of 25. Besides, a forward-swept delta wing in
combination with a relatively large high-mounted
tail plane appear to provide sufficient longitudinal
stability in a range of flight heights including
cruising close to the ground and dynamic jump
modes.

In the 70s the series was extended to the X-114
(takeoff weight of 1.35 tons) which was commis-
sioned by the German Ministry of Defense, Fig. 9.
In order to reduce significant loads encountered
when landing on the water surface, hydrofoils were
mounted on the vehicle, two in the front and one at
the stern. Beside these small craft Lippisch also
studied the design of much larger machines.

One such design was that of a 300-ton GE
machine with a 6-engine power plant of 50,000 hp,
able to carry 300 passengers at a cruising speed of
300 km/h [4].

Three types of WIG effect vehicles were developed
by the Japanese company Kawasaki (KAG-1, KAG-2
and KAG-3) [4,10]. The vehicles were designed by
Ando. The KAG-3 vehicle (takeoff weight of 0.7 ton,
length 5.9m, width with stabilizers about 6.15m,
screw propeller) was built and tested in 1963, Fig. 10.

2.3. Russian ekranoplans

The Russian developments started in the early
sixties almost simultaneously in the Taganrog
Aviation Construction Complex headed by Beriev
and in the Central Hydrofoil Design Bureau
(CHDB) in Nizhniy Novgorod [11–13].

The vehicles developed in Taganrog under the
guidance of Bartini were seaplanes rather than
ekranoplans in the direct sense of the word. The
idea behind Bartini’s designs was to provide
contact-free takeoff and landing of a seaplane using
the GE.

Two anti-submarine airplanes named Vertical-
takeoff-Amphibia were built possessing improved
seaworthiness and being able to takeoff and land at
practically any sea state. The development started
with the small single-seat seaplane Be-1 built in
1961. It had a low-aspect-ratio main wing between
two floats (hulls) and small side wings. The vehicle
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Fig. 11. Vertical-takeoff Amphibia (Bartini, Beriev Bureau).

Fig. 12. Ekranoplan ‘‘Orlyonok’’ (Alexeev-Sokolov).
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was propelled by a turbojet engine mounted on the
upper side of the main wing. To facilitate liftoff
surface-piercing hydrofoils were fitted on the floats.
Next was VVA-14 which had a length of 26m,
width of 6m, takeoff weight of 52 tons and cruising
speed of 760 km/h at altitude of 10 km, Fig. 11.

This was essentially a flying catamaran. Its basic
part was a small-aspect-ratio center-wing of rectan-
gular planform bounded by two hulls. The fuselage
was mounted toward the front part of the wing
along its axis and two side wings were fitted behind
the center of gravity (CG). The liftoff was to be
provided by 12 engines on the center wing. In fact
these were power augmentation engines. Two D-
30M turbofan cruise engines were located rear-
wards above the central wing so that they were
protected against water ingestion. Also there were
14-m long inflatable pontoons fitted on the bottom
of the side hulls.

However, the main developments of what is now
called ekranoplan were made in CHDB by Alex-
eev’s team which viewed the vehicle’s flight close to
the underlying surface as the main regime of
operation. The first piloted ekranoplan SM-1 of 3-
ton takeoff weight was based on a tandem scheme
(1960). This concept was later discarded because of
the high speed of detachment from the water,
‘‘stiffness’’ of flight and narrow range of pitch
angles and ground clearance for which this config-
uration was longitudinally stable.

The 5-ton SM-2 prototype had a new configuration,
comprising a low-flying main wing and highmounted
tail plane. Another revolutionizing novelty of this
vehicle was its capability to pressurize the air under
the main wing by the exhaust of the engines located
upstream in the front part of the vehicle. Thus
emerged a wing-tail configuration with PAR consti-
tuting the basis for the following series of ekranoplans
of the first generation.

As a result of a huge engineering effort involving
development and tests of many self-propelled models
there evolved a prototype KM with takeoff weight of
550 tons, length in excess of 90m, cruise speeds
above 500 km/h, main wing of aspect ratio 2, Fig. 1.

The first small-scale KM prototype was the model
SM-5 although its tail plane did not feature a
dihedral which appeared later on SM-8 and the KM
itself. Eight marinized turbofan engines of 10-ton
maximum thrust each were mounted on the front
pylon forward of the main wing to provide PAR
takeoff. Another two identical engines were in-
stalled at about mid-height of the vertical stabilizer
and were used for cruising. After extensive tests in
1967–69, KM showed: efficient takeoff in waves up
to 3m, smooth flight, amphibious capability (ability
of going onto a shallow water area and a beach),
and good longitudinal stability in the whole range of
design heights.

The next vehicle of the KM family was ‘‘Orlyo-
nok’’ (1973, with 120-ton takeoff weight, length of
60m, aspect ratio 3 main wing), Fig. 12.

Differently from KM, ‘‘Orlyonok’’ had two PAR
engines of 10-ton static thrust ‘‘hidden’’ in the bow
part of the fuselage. Cruise propulsion was provided
by a 16-ton static thrust turboprop engine, mounted
at the intersection of the vertical stabilizer and the
tail plane, and two counter-rotating variable pitch
propellers with diameter in excess of 6m. The
turboprop engine not only ensured higher efficiency
than the jet, but also the variable pitch propellers
provided remarkable low-speed maneuverability in
the PAR mode.

In 1987, the next representative of the KM family
was launched—a missile carrier ‘‘Loon’’ (400-ton
takeoff weight, 450 km/h cruising speed, length of
74m, main wing aspect ratio exceeding 3). Its
peculiarity was that (due to the missile launching
mission) all eight engines (static thrust of 13 tons
each) were mounted on the bow pylon to serve both
as PAR and cruise prime movers, Fig. 13.

Another type of Russian WIG effect vehicles is
known as Dynamic Air Cushion Ships or DACS
[12,14]. The DACS concept was set forth by Alexeev
in the late 70 s with designs accommodating from 8
to 250 passengers. The basic element of DACS is a
wing of small aspect ratio bounded by skegs (floats)
and rear flaps to form a chamber. The dynamic air
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Fig. 13. Ekranoplan ‘‘Loon’’ (Kirillovykh).

Fig. 14. Dynamic air cushion boat ‘‘Volga-2’’.

Fig. 15. XTW-1 vehicle (CSSRC, Wuxi, China).
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cushion in the chamber under the wing is formed by
means of blowing of the air with special fans
(propellers) mounted in front of the vehicle. The
overpressure under the wing equals or exceeds the
weight of the vehicle even at zero or small speed. As
the speed increases, the augmentation of lift is
additionally enhanced due to the dynamic head of
the oncoming air. For DACS the blowing (power
augmentation) is a permanent feature present both
in the cruising and takeoff–touchdown modes.
Numerous tests carried out at the CHDB showed
that efficiency of DACS is similar to that of
hydrofoil ships. At the same time, the speed of
DACS far exceeds that of both the hydrofoil ships
and the ACVs. The first practical vehicle of DACS
type was the Volga-2 cutter, Fig. 14.

This 2.7-ton craft has a length of 11.6m, width of
7.65m and height of 3.6m. The range of cruise
speeds of Volga-2 is from 100 to 140 km/h. The
vehicle is propelled by the ducted air propellers
mounted ahead of the wing. Inclination of their axes
and use of special hinged vanes serves to provide
both power augmentation and horizontal thrust.
The main lifting wing of the craft is almost square
and has S-shaped sections to enhance the long-
itudinal stability. As a result, the latter turns out to
be sufficient in spite of the relatively small tail area.

3. Recent projects

3.1. Projects and prototypes produced in China

Development and design of WIG effect craft in
China was started in the China Ship Scientific
Research Center (CSSRC) in 1967 [15,16]. Since
then, during more than 30 years a total of nine small
manned test vehicles have been designed and tested
on lakes and in coastal waters (see table). The XTW
series was based on a wing-tail configuration with
the main wing having forward sweep as in Lippisch
designs, Fig. 15.

In 1996 the CSSRC reported developing the
XTWII, XTW-III and XTW-IV WIG effect craft,
Fig. 15. A typical craft of this series is XTW-4 which
was slightly modified from XTW-2 to comply with
specific requirements from sea trials. This 20-
passenger WIG effect ship was first tested on the
Changjiang River in the autumn of 1999. The
vehicle comprises: a major hull (float), the main
wing supported by two minor floats, two vertical
stabilizers carrying a high-mounted tail plane. To a
certain extent the vehicle can be ascribed to wing-
tail configurations. The main wing features the
forward sweep, reminiscent of the Lippisch deltaw-
ing concept. Two P&WC PT6A-15AG turboprop
engines with MT’s 5-bladed adjustable pitch pro-
pellers are mounted at the leading edge of the main
wing. Thus, the slipstream is efficiently used to assist
takeoff. Also, the WIG effect sixseat vehicle SDJ 1
using a catamaran configuration was developed [17].

In early eighties another Chinese organization,
MARIC, started developing what they called
AWIG (Amphibious WIG) [18]. About 80 models
were tested to study optimal wing profiles, config-
uration of the air channel, position of the bow
thrusters, arrangement of the tail wing, etc. A self-
propelled radio-controlled model of 30 kg was
tested on Din-San lake in a suburb of Shanghai.
As the model showed acceptable performance,
MARIC proceeded to the development of the larger
craft AWIG-750 with a maximum TOW of 745 kg,
length 8.47m, span 4.8m, height 2.43m, Fig. 16.
The power plant included internal combustion
engines: two for lift and two for propulsion of the
craft. Each engine drove a ducted thruster type DT-
30 of 30 hp rated power at 6000 rpm. The vehicle
was able to takeoff in waves of 0.5m and had a
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Fig. 16. AWIG-751 (MARIC, China).

Fig. 17. Airfish 3 (Hanno Fischer).

Fig. 18. Airfish 8—Flightship 8 (Hanno Fischer).
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maximum speed of 130 km/h. It demonstrated the
expected (amphibious) capability of passing from
the water to the shore and back.

In 1995, the China State Shipbuilding Corpora-
tion commissioned the R&D for a 20-seat AWIG-
751 under the name ‘‘Swan-I’’ to MARIC and the
Qiu-Sin Shipyard [18], Fig. 16.

The vehicle which was completed by June 1997
had a TOW of 8.1 tons length–width–height
dimensions of 19� 13.4� 5.2m3 and a maximum
cruising speed of 130 km/h in calm water. It had
three aviation-type piston engines: two HS6E
engines of 257 kW each for PAR lift and one
HS6A engine of 210 kW for propulsion. The PAR
engines drove two bow ducted 4-bladed air propel-
lers and the cruise engines drove a two-blade
variable pitch propeller. As compared to the
previous AWIG-750 it had several new features,
including: increased span of the main wing,
composite wing, combined use of guide vanes and
flaps to enhance longitudinal stability, CHIBA
composites to reduce structural weight.

The tests confirmed overall compliance with
the design requirements, but showed some dis-
advantages, namely, too long shaft drives of the
bow propellers, lower payload and lower ground
clearance than expected. The follow-on vehicle
AWIG-751G (Swan-II) had increased dimensions,
a modified PAR engines layout and an improved
composite wing.

3.2. Projects and vehicles developed in Germany

Hanno Fischer, the former technical director of
Rein-Flugzeugbau, set up his own company
Fischerflugmechanik and extended the Lippisch
design concept to develop and build a 2-seat
sports vehicle designated as Airfish FF1/FF2 [19],
Fig. 17.

Unlike X112 and the following X114, the Airfish
was designed to fly only in GE. It was manufactured
of GRP and reached a speed of 100 km/h at just half
the engine’s power during tests in 1988.
In 1990 Fischer Flugmechanik tested a 4-seat
vehicle Airfish-3, which was 2.5 times heavier than
Airfish FF2, flew at a speed of 120 km/h and was
able to cover a range of 370 km [19], Fig. 17. With a
length of 9.45m and a width of 7.93m, the vehicle
had an operational clearance ranging from 0.1 to
1m. Although the craft was tailored for use in GE,
it could perform temporary dynamic jumps climbing
to a height of 4.5m.

A design based on the Airfish series formerly
developed by Fischer Flugmechanik has re-emerged
in Flightship 8 (FS-8 initially designated as Airfish 8)
[19], Fig. 18. The FS-8 was developed in Germany
by Airfoil Development GmbH and made its
maiden flight in the Netherlands in February 2000.
With its TOW of 2325kg, length of 17.22m, width of
15.50m and height of 4m the Flightship-8 carries 8
people, including two crew. The wave height at
takeoff is restricted to 0.5m, but when cruising the
vehicle can negotiate 2-m waves. FS-8 is made of
FRP. With an installed power of 330 kW it has a
cruising speed of about 160 km/h and a range of
365km. The customer is the Australian Company
Flightship Ground Effect Ltd. whose branch Flight-
ship Australia conducted trials of the vehicle in
Australia. The R&D and production work is
monitored by Germanischer Lloyd with regard to
classification of the craft.

A larger Flightship-40 (FS-40) dubbed Dragon-
Clipper is being designed for up to 40 passengers in
the commuter version for an equivalent payload of 5
tons in alternative configurations. This larger craft
has a length of 30m, and the wingspan of 25m can
be reduced to 20m for onshore handling by folding
winglets. The main construction material is alumi-
num, and the Pratt and Whitney turboprop-diesel
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Fig. 20. ‘‘Hydrowing’’ vehicle of Technotrans.

Fig. 21. Marine passenger Ekranoplan MPE-400 (D. Synitsin,

T&T—ATT—ATTK).
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engines developing 1000 kW will increase the cruis-
ing speed to about 225 km/h. Maximum takeoff
wave height is 1.2m and increased wing span allows
over-water operation in 4m seas. The originators
of the FS-8 design Fischer Flugmechanik and
AFD Aerofoil Development GmbH have recently
announced a proposal to produce a new craft
HW20 [20] combining WIG effect and static
air-cushion technology (see paragraph 9.2). The
design of HW20 (Hoverwing) employs a simple
system of retractable flexible skirts to retain an air
cushion between the catamaran sponsons of the
main hull configuration. This static air cushion is
used only during takeoff, thus enabling the vehicle
to accelerate with minimal power before making a
seamless transition to true GE mode, Fig. 19.

Techno Trans e.V. was established in 1993. The
company started its activities by performing quite
extensive tests of Joerg tandem craft prior to
launching their own WIG effect craft, project
Hydrowing [21] with the goal to build an 80-
passenger ferry. In the mid-nineties they built a 2-
seater prototype (Hydrowing VT 01) propelled by
two unducted propellers. The vehicle had a TOW of
812 kg, length of 9.87m and width of 7.77m. With
installed power of 90 kW it could sustain a cruising
speed of 120 0 km/h and could operate in waves of
0.4m. The main wing of the vehicle had S-shaped
cross-sections for better stability, and a high-
mounted horizontal stabilizer supported by two
vertical fins at the stern [21].

The present project of Techno Trans is designated
Hydrowing 06, Fig. 20. It has a TOW of 2.3 tons,
installed power of 210 kW, a length of about 14m, a
width of 11m and a cruising speed of 125 km/h. It
also adopts the forward sweep feature of the
Lippisch designs, has both air and water rudders,
and is equipped with a small hydrofoil for takeoff
assistance.

3.3. New vehicles and projects in Russia

3.3.1. Marine Passenger Ekranoplans

A composite wing configuration implies func-
tional subdivision of the craft’s lifting area into two
Fig. 19. Hoverwing-20 with a static air-cushion liftoff system.
parts: the one (central) taking advantage of the
power augmentation mode, and the one (side wings)
adding efficiency and longitudinal stability in cruise.
Provision of stability in this case has three major
ingredients: special profiling of the central part of
the main wing, horizontal tail (albeit relatively
small), appropriate geometry and position of the
side wings. The designs, exploiting these features,
are those of the MPE (Marine Passenger Ekrano-
plan) series (Designer General D. Synitsin), ranging
in TOW from 100 through 400 tons [14], Fig. 21.
The MPE-400 project (1993) has a TOW of 400
tons, length of 73m, width of 53m and height of
20m. It is intended to carry 450 passengers. It
features an overall aspect ratio of 4.5. For better
stability the central wing sections were S-shaped
resulting in considerable reduction of the area of the
tail plane. The latter constitutes 27% of the area of
the main wing. For KM this factor was 50%.
Because of the aforementioned specific features the
ekranoplans of MPE type can be assigned to the
second generation.

3.3.2. Amphistar-Aquaglide series

Ekranoplan Amphistar was developed and built
by the company ‘‘Technology and Transport’’
(Director and principal designer D. Synitsin) in
1995 [22]. In 1997 this vehicle was awarded the
certificate of the Register of Shipping of the Russian
Federation as a cutter on dynamic air cushion. The
maximum TOW is 2720 kg, its L� B�H dimen-
sions are 10.44� 5.9� 3.35m3. At cruising speed of
150 km/h it has a range of up to 450 km. Seaworthi-
ness is about 0.5m. The turn radius at cruising
speed is about 65 hull lengths. In water the turn
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Fig. 22. Aquaglide-5 wing-in-ground effect vehicle (Synitsin,

ATT-ATTK).

Fig. 23. Aquaglide-50 (project, Synitsin, ATT-ATTK).

Fig. 24. (a) Transport Amphibious Platform (project, CHDB).

(b) Transport Amphibious Platform Aquaglide-60 (project, ATT-

ATTK).
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radius is about a hull’s length. A modified version of
the vehicle has recently appeared under the name
Aquaglide, Fig. 22. Synitsin developed a scaled
up series of Amphistar-Aquaglide-type vehicles,
Fig. 23. Another example of larger dynamic
air-cushion vehicles scaled up from the Volga-2
cutter is a 90-passenger high-speed river craft
Raketa-2 designed to cruise at a speed of 180 km/h
for ranges up to 800 km, and powered by a gas
turbine. CHDB has also developed a conceptual
design of a 250–300 passenger dynamic air-cushion
ship Vikhr-2.

3.3.3. Transport Amphibious Platforms (TAP)

This new concept of fast water amphibious
transport developed by the CHDB and ATT-ATTK
has speeds in the range of those of a hovercraft and
WIG effect craft, Figs. 24a and b. Like the Dynamic
Air Cushion Craft the TAP are supported both by
the dynamic head of the oncoming flow and by that
of the jet exhaust of the bow PAR engines. At the
same time, the TAP moves in constant contact with
the water surface (note that the ATT-ATTK
concept of TAPs admits gaps between the vehicle
and water surface). High efficiency is achieved
through a proper combined use of the aerodynamic
GE and high hydrodynamic quality of the elongated
planing hulls (floats). The main structural compo-
nent of the TAP is a cargo platform with long-
itudinal side skegs, the bow pylon with PAR engines
and a bow cockpit. The propulsion engines are
mounted on the tail plane. The claimed advantages
of the TAPs are high-speed (up to 250 km/h),
amphibious capacity, ability to carry superheavy
and oversized cargoes, high weight efficiency (up to
40–50%) due to a structural scheme simplified
versus hovercraft and WIG craft, low specific load
on the supporting surface of the skegs (close to that
of a skier on a snow surface), making the vehicle
ecologically friendly.

The TAPs [23] are claimed to have advantages
compared to hovercraft: 2 times larger speed; high
seagoing qualities providing stable motion in rough
seas without flexible skirts; high cargo-carrying
capacity and weight efficiency; relatively simple
structure featuring no complicated multi-element
power plant with reduction gears, transmissions
and hover fans. The TAP aerodynamic efficiency
(lift-todrag ratio) is 10–12 at a speed of the order of
135 knots.

3.4. Projects and vehicles in the USA

In the early 90s, a US company named AERO-
CON developed a project Aerocon Dash 1.6 [8],
Fig. 25. This mammoth Wingship had the following
physical characteristics: TOW ¼ 5000 tons, payload
fraction of 0.3588, wing loading of 258 lb/sq. ft
(1260kg/sqm), cruise speed of 400 knots (740km/h),
cruise altitude of 12 ft (3.66m). As underlined in
the DARPA report, a unique characteristic of the
Dash 1.6 is its land overflight capability. A flight
altitude of 6000 ft (1830m) and a speed of 400 knots
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Fig. 25. Aerocon Dash 1.6 ‘‘Wingship’’ (Stephan Hooker).
Fig. 26. Lockheed Martin SEA (surface-effect-aircraft) concept.
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were assumed for the transit over land barriers.
Whereas in free flight lift-to-drag ratio was esti-
mated as 15, in design GE mode the expected value
of aerodynamic efficiency was more than 32.

In recent years Lockheed Martin Aeronautical
Systems investigated the development of what they
call Sea-Based Aircraft [24]. LMAS calls for a move
to hybrid aircraft compliant with a modern doctrine
of rapidly moving smaller and lighter forces
anywhere in the world, or standoff power projection
on demand anywhere in the world. The LMAS
search for appropriate hybrid solutions resulted in a
family of designs. These include: seaplanes, float-
planes and WIG-like combined surface effects
aircraft—SEA, Fig. 26.

LMAS concludes SEA is an emerging more
effective alternative to WIG craft.

Whereas the latter
�
 is a ship that flies (specifically, the Russian
Ekranoplans),

�
 has little altitude or maneuvering capability,

�
 is sea-restricted,

�
 has long takeoff roll,

�
 should be very large for the mission objectives,

�
 has no signature reduction capacity

the former
�
 is an aircraft which operates on water,

�
 has aircraft altitude capability,

�
 has shorter takeoff roll than pure WIG aircraft,

�
 may be shaped for signature reduction,

�
 has reduced risk due to rogue waves and surface

obstacles.
SEA combines multiple surface effect technologies
in a Sea-Based Mobility Hybrid Aircraft design—
WIG, seaplane and hydroplane hull shaping. surface-
effect ship hull shaping, ram and power-augmented
lift, powered circulation lift and ski ship. According
to LMAS, such a concept is viable with the current
aircraft technology, and would provide speeds up to
400 knots and a global range with 400 tons of
payload.

As reported by Boeing Frontiers (online, Septem-
ber 2002, vol. 01, issue 05), a high-capacity cargo
plane concept dubbed Pelican is being developed
currently by Boeing Phantom Works [25], Fig. 27.

It has a large-aspect-ratio main wing, a wingspan
of 500 ft (153m), a wing area of more than an acre
(0.4 ha), twice the dimensions of the world’s current
largest aircraft An-225, and it can transport up to
1400 tons of cargo.

It has a long trans-oceanic range and can fly as
low as 20 ft above the sea (span-based relative
ground clearance of the order of 20/500 ¼ 0.04), but
it is also able to fly at heights of 20,000 ft or higher.
Intended for commercial and military operators
who desire speed, worldwide range and high
throughput. As indicated by John Skoupa, senior
manager for strategic development for Boeing
advanced lift and tankers ‘‘The Pelican stands as
the only identified means by which the US army can
achieve its deployment transformation goals in
deploying one division in 5 days or five divisions
in 30 days anywhere in the world’’. It can carry 17
M-1 main battle tanks on a single sortie.

Other applications are: as mother ship for
unmanned vehicles, or as potential first-stage plat-
form for piggybacking reusable space vehicles to
appropriate launch altitude.

The (extreme) GE provides larger range and
efficiency. The ‘‘Pelican’’ is foreseen to fly 10,000
nautical miles over water with a payload of 1.5
million pounds. As flying in GE requires the latest
flight control technology, the vehicle will be
equipped with reliable systems providing precise,
automatic altitude control and collision avoidance.
It is worth mentioning that Pelican is a deja vu

concept. In the late sixties, Boeing was conducting
intensive developments of an anti-submarine GE
vehicle named ‘‘Lowboy’’ configured as an airplane
with low-mounted high-aspect-ratio wing. The
Pelican has been offered by Boeing as part of a
system solution that would include the C-17 Globe
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Fig. 27. Cargo plane-in-ground effect concept ‘‘Pelican’’ (Boeing).

Fig. 29. Hydrofret 2 (concept, G. Gazuit and Y. Goupil).
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master III transport, the CH-47 Chinook helicopter
and the advanced theater transport.

3.5. Other projects and developments

3.5.1. Sea-Bus project (European Community,

surface-piercing hydrofoil-controlled WIG effect

configurations)

The Sea Bus (project, 1997–2000) is basically a
large wing operating in GE just above the water
surface which also features hydrofoils and a water-
jet propulsion system [26], Fig. 28. The hydrofoils
are positioned in a trimaran arrangement, and are
connected to the air wing by vertical surface
piercing struts. Separate V-shaped takeoff hydro-
foils assist in generating lift force, thereby decreas-
ing the takeoff speed at which the floating hulls of
the vehicle rise from the water. The main purpose of
the hulls is to provide buoyancy in floating
operations at low speed in harbors and in takeoff
and re-entry operations. Due to the large water
density, the control of the vehicle by hydrofoils
becomes more efficient in terms of shorter response
time.

It was hoped that the longitudinal stability would
be ensured by hydrofoils which implies redundancy
of aerodynamic tail planes. It was required that the
Sea-Bus should carry 800 passengers and 100 cars at
a cruise speed of 100 knots over a distance of
850 km. One of the key problems is the cavitation
occurring on the hydrofoils at speeds exceeding 40
knots.
Fig. 28. European Sea Bus project.
3.5.2. Hydrofret concept

Proposed as a solution for the airport congestion
problem, the Hydrofret (Hydrofreight) concept calls
for extending the airfields to water surfaces. In
fact, the authors of the concept, Gazuit and
Goupil [27] advocate a specific formula for a sea-
plane, which features catamaran hull tandem wings
large wing-like fuselage use of static (air cushion) and
dynamic GE.

The concept is proposed in two versions. The first
is a ram-wing catamaran complemented by a large-
aspect-ratio lifting forward wing (side wings) and a
highly mounted large-aspect-ratio tail plane. In the
alternative version the tail wing is replaced by a
large-aspect-ratio rear wing (side wings) forming a
tandem with the forward wing, Fig. 29.

Deja vu: a seaplane design, combining a ram-
wing catamaran hull with a wing of large aspect
ratio (side wings), was proposed by R. Bartini in
early 60s and is known as a Vertical-takeoff-
Amphibia (VVA-14). The goal was to provide
contact-free takeoff and landing of the seaplane.

The Hydrofret differs due to the second large-
aspect-ratio wing element, highly mounted or
located at the plane of the ram wing. A common
gain in both versions with respect to a ram-wing GE
machine is that the overall aspect ratio of the system
is enlarged due to high-aspect-ratio wing elements.
It appears that by properly adjusting relative
position, pitch angle and areas of the large-aspect-
ratio elements, one may provide static stability of
the vehicle when flying close to the water surface.
Additional reserve in this respect lies in special
profiling of the ram wing in the longitudinal
direction (S-shaping and similar measures).

However, there may occur stability problems in
the transitional height range. Besides, while the
highly mounted tail in the first version of the
Hydrofret could have been seen as an unpleasant
necessity for GE machines proper, it appears to be
somewhat clumsy in free air flight which constitutes
the main operational mode for the airplane.

3.5.3. Multihulls with aerodynamic unloading

A certain amount of work has been done on using
the unloading effect of the presence of sea surface
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on high-speed catamarans. Doctors call such
catamarans ‘‘ekranocats’’ [28].

Somewhat earlier a similar concept of a Ram
Augmented Catamaran (RAC) was also proposed
by Gallington [29] who found that (obviously) the
most efficient power augmented craft should be
touching water very little and cruise at high speeds.
In fact the RAC concept is a tradeoff between
increased drag of the side plates penetrating the
waves and the loss of lift and propulsion associated
with the lateral leakage of air.

As reported, Incat Tasmania has been conducting
tests of a manned model high-speed craft, ‘‘the
Wing’’, that employs the WIG effect concept to
provide additional aerodynamic lift. Results of the
model tests have shown speeds in excess of 60 knots.
The test vessel is configured with three hulls (central
hull forward, outer hulls aft) supporting a delta
wing superstructure, Fig. 30.

A concept of a very fast ‘‘semi-WIG’’ wave-piercing
trimaran (WPT) making use of aerodynamic unload-
ing of the hulls was developed by Dubrovsky, Fig. 31.

The concept of what they call Air-Assisted Vessel
Solutions has been explored in a joint effort by
Effect Ships International (ESI) and SES Europe
AS (SE). ESI claims to have patented Air Supported
Vessel technology for both monohull and multihull
vessels in 2002. They see it as an innovative
approach to reduce hull resistance and improve
performance—suitable for various naval and com-
mercial applications.
Fig. 30. A model of ekranocat tested in Australia.

Fig. 31. Artist’s view of a 100-knot ‘‘semi-WIG’’ WPT ferry

designed to carry 600 passengers and 100 cars.

Fig. 32. m-Sky 2 wing-in-surface effect (WISE) vehicle (S. Kubo,

Mitsubishi).
3.5.4. New Japanese WISE craft developments

A tendency of Japanese designs to have a simple
flying wing configuration started by Kawasaki
KAGs was confirmed in the m-Sky vehicle series
developed by Professor Syozo Kubo from Tottori
University and built with support of Mitsubishi
[30,31]. The m-Sky 1 (Marine Slider) first flew in
1988. This 1-seater craft had a square platform
and endplates, TOW of 295 kg and L�W �H

dimensions of 4.4m� 3.5m� 2m. Powered by a
64 hp engine driving a 4-bladed fixed-pitch air
propeller, the craft could develop a cruising speed
of 82 km/h.

After the m-Sky 1 vehicle a more sizable 2-seat m-
Sky 2 vehicle was developed and built by Mitsubishi
under the supervision of Kubo [31], Fig. 32. While
almost similar to the previous craft, it had certain
distinctions: both air and water rudders, a wing
structure made of aluminum pipes covered with
cloth.

The project of a 8-seater ‘‘flying wing’’ type craft
started in 1998 by S. Kubo and H. Akimoto (of
Tottori University) with financial support from
Fukushima Shipbuilding Ltd and additional fund-
ing (of the tests from April 2000 through April
2001) from Shimane Prefecture [32], Fig. 5.2.19.
Takeoff weight 2.5 ton, dimensions L� B�H ¼

12� 8:5� 3:7m, cruising speed of 150 km/h, the
expected range—over 350 km. Two water-cooled
reciprocal engines rated 250 PS each, installed in the
middle of the central body, drive two three-bladed
propellers of 2m diameter. The section of the main
wing is Munk M6R2 for the upper side and CJ-5 for
the lower side. The resulting camberline of the wing
is S-shaped and the thickness is 9%. The center
body of the ship (hull, cabin and root parts of the
starboard and port halves of the main wing) is made
of FRP strengthened by aluminum pipes. It has a
step on the bottom and the rudder near the trailing
edge. Outer wings and tail unit are constructed from
aluminum pipes and covered by cloth. The outer
wings have endplates at the tips. The main wing
does not have a flap. The horizontal tail represents a
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stabilizer with elevator to adjust the angle of attack.
The vehicle has two vertical fins with air rudders.

Japanese Canard WISES project:

The developers (from Tottori University, Japan)
claim that a wing-tail configuration shows some
defect in takeoff, whereas the proposed canard
layout facilitates takeoff from rough seas [33]. They
attempted to illustrate their idea by means of self-
propelled model tests with 1.8 and 3.6 length models
(Kaien (storm petrel)-1 and 2). They state that
WISES should have seaworthiness over 3.0m wave
height for practical service in the seas around Japan.
In the authors’ opinion, the canard scheme allows to
takeoff with high angle of incidence. In comparison,
the wing-tail scheme does not allow large rotation
angle without touching the water. They also think
that PAR ceases to be an effective liftoff aid in
rough seas because the impinged air leaks easily
from under-the-wing. The canard-type WISES used
by the authors has a forward mounted horizontal
stabilizer (canard) and two propellers on it. The
elevator on the canard controls the pitching
moment of the ship and the deflection angle of the
propeller wake. Vertical fins with air propellers are
in the wake flow of the propellers. In the developers
opinion, the merits of the concept are:
�
 high angle of attack position results in a high lift
force,

�
 high-speed wake from the props prevents both

the canard and the main wing from stalling, even
in a high lift condition,

�
 the elevator and rudders are efficient even for

small forward speed because they are in the
propeller wake,

�

Fig. 33. HeliFerry—example of RotorWIG.
propulsion systems always work in a spray-free
region.

It is emphasized that the concept is better suited
for large WISES. The main wing of Kaien-2 has a
profile of NACA3409s (NACA3409 with modified
camber line in rear part), whereas Kaien-1 had a
profile of ClarkY. The lift-to-drag ratio in cruise
was 6, i.e. somewhat lower than expected. Takeoff
speed was 6m/s and cruising speed was 9.5m/s. The
pitch angle in cruising was 4–51 and at takeoff—
2.5–3.51. In circular flight the mean roll angle was 51.
The maximum lift coefficient at takeoff (pitch up 151)
was 1.9, i.e. about 4 times larger than that in
cruising.

They compared their preliminary design of a
WISES for 140 passengers, displacement 56 tons,
length 29.5m, width 19.6m, propulsion 3046kW� 2
turboprop, maximum speed of 160 knots, with the
Kawasaki Jetfoil. The former has a transportation
capacity 1.5 times that of the Jetfoil.

3.5.5. RotorWIG [34]

Rotor WIGs are characterized by a large over-
head rotor. The rotor allows for the third mode of
locomotion, positioned between the hull and the
wing. The rotor features tip weights that make up
about half of the total weight of the rotor system.
Before takeoff the rotor is over-rotated. Shortly
after initiating the takeoff run, the pitch of the rotor
blades is increased and, within seconds, the craft
leaves out of the water. Suddenly freed from any
water drag, the air propellers accelerate the craft
swiftly to cruising speed and it is the wing that takes
over the lift from the rotor. During cruise, the rotor
is off-loaded and its rpm allowed to drop to lower
the drag quite drastically. For landing, the rotor
disc is held back to catch enough wind to act as an
air break and increase its rpm. The energy in the
over-rotated rotor is then spent to lower the craft
softly on the waves during flare with little if any
forward speed.

The HeliFerry [34]:
RotorWIGs can be configured in many different

ways to fit different mission objectives. HeliFerry
(HF) is a WIG version of HeliPlane, a twin pusher
propeller rotorcraft of the size of a C-130 Lockheed
transport plane and specifically designed around the
Carter rotor system, Fig. 33. The HF is a double
decked rotorWIG based on a very slender hull
trimaran configuration. The low wing is of classic
Lippisch, reverse delta design. The other specifica-
tions are: length—118 ft, rotor radius—150 ft,
beam—70 ft, displacement—110,000 lbs, cruise
speed—120 knots at sea state 3. The rotor system
itself weighs 3 600 lbs, including the hub, pitch
linkages and the tip weights, its rpm ranges from a
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maximum in over-rotation of 125 to 85–100
required for full lift, to settle to 25 in cruise.

3.5.6. Korea WIG project [35]

Recently, it has been announced that the Korean
government plans to invest by 2010 in the develop-
ment of a large 300-ton WIG effect vehicle capable
of carrying 100-ton payload at a height of 1–5m
above sea level. This WIG craft would have a length
of 77m, width of 65m and would cruise at an
average speed of 250 km/h. The plan is to use it as a
next generation cargo ship to reach the neighboring
countries or islands in South Korea. It could reach
Qingdao, China from Inchon, South Korea in 3 h.
In particular, it would be useful for fast delivery of
fresh vegetables and fruits. Korea Ocean Research
and Development Institute has already finished a
successful test of a small four-seat WIG craft whose
development started in 1995. A sketch of the
Korean large WIG ship is presented in Fig. 34.
Fig. 34. Artist’s impression of Korean large WIG ship.
4. Areas of application of WIG effect craft

Widely discussed, see Belavin [4], Volkov et al.
[36] and Hooker [6], are such beneficial properties of
ekranoplans as:
�
 cost effectiveness when properly designed and
sized,

�
 high ride quality (low level of accelerations) in

cruise mode,

�
 impressive seaworthiness in takeoff and landing

and practically unlimited seaworthiness at cruise,

�
 safety of operation due to the effect of ‘‘binding’’

to the underlying surface and also because ‘‘...the
airport is right beneath you...’’

�
 amphibious capacity, i.e. ability to operate in GE

over water, land, snow or ice surface,

�

Fig. 35. Search-and-rescue ekranoplan ‘‘Spasatel’’.
capacity of climbing an unprepared beach to
embark/disembark passengers or carry out the
maintenance of the vehicle,
�
 no need for airports or runways,

�
 no need for sealed cabins as required on strato-

spheric airplanes.

4.1. Civil applications

According to a preliminary analysis, as reported
by Belavin [4], Volkov et al. [36] and Hooker [6],
there exist encouraging prospects for developing
commercial ekranoplans to carry passengers and/or
cargo, to be used for tourism and leisure as well as
for special purposes, such as search-and-rescue
operations.

4.1.1. Search-and-rescue operations

Memories are still fresh about the tragedies that
happened with the nuclear submarine ‘‘Komsomo-
lets’’ on April 7, 1989 in the Norwegian Sea, and the
nuclear submarine ‘‘Kursk’’ on August 12, 2000 in
the Barents sea.

An analysis of existing means of rescue on water
shows that surface ships are unable to come to the
place of disaster quickly enough, while airplanes
cannot perform effective rescue operations because
the airplanes cannot land close to a sinking ship.
Even most modern seaplanes have both lower
payload and seaworthiness as compared to the
ekranoplans. The GE search-and-rescue vehicle
‘‘Spasatel’’ is under construction at ‘‘Volga’’ plant
in Nizhniy Novgorod.

‘‘Spasatel’’, Fig. 35 which is based on the
‘‘Loon’’-type ekranoplan, combines features of all
known means of rescue on sea (search-and-rescue
airplanes, helicopters, ships). Its cruising speed is
expected to be in the range of 400–550 km/h in GE,
and up to 750 km/h out of GE. Altitude when flying
far from the underlying surface would be up to
7500m, and about 500m in searching mode. The
vehicle can land and conduct rescue operations in
waves up to 3.5m. It is capable of loitering in rough
seas with wave heights reaching 4m. ‘‘Spasatel’’ has
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a range of 3000 km, can operate autonomously for 5
days and is able to accommodate up to 500 people,
see Denissov [37]. Before a decision todevelop
‘‘Spasatel’’ had been taken several experiments on
the available missile carrier ‘‘Loon’’ have been
performed to appraise the ekranoplan’s capacity
to serve as a rescue vehicle. These experiments
showed that ekranoplans have some useful features
justifying their use for rescue operations on the
water. In particular, when drifting on water the
vehicle is naturally brought to a position with its
nose against the wind. As the vehicle’s main wing is
partially (with its aft part) immersed in the water,
there forms a region of relatively calm water behind
it. The upper side of the main wing can be used as a
platform for embarkation of lifeboats and people
from the water surface, Fig. 36.

The CHDB in Nizhniy Novgorod and the Ukrai-
nian aviation enterprise ‘‘Antonov’’ jointly studied
the possibility of developing a unique large search-
and-rescue system which combines the long-range
and high-speed capability of a large airplane with the
life-saving features of ekranoplans in the sea, Fig. 37.
Fig. 36. Artist’s impression of rescue operations with ekrano-

plan.

Fig. 37. A search-and-rescue complex combining the ‘‘Mria’’ and

‘‘Orlyonok’’ (Project).
The system implies that a search-and-rescue variant
of ‘‘Orlyonok’’ with improved seaworthiness and
special medical equipment is mounted on the back of
the mammoth airplane AN-225 ‘‘Mria’’ to be
transported to the place of disaster at a speed of
700km/h. Upon arrival at the place of emergency the
ekranoplan takes-off from AN-225, descends and
lands on the water surface to turn into a seagoing
rescue vessel. Note that due to the considerable
strength of its structure the ekranoplan can land in
rough seas, which is dangerous for seaplanes.

4.1.2. Global Sea Rescue System [38]

There is a worldwide concern to develop effective
rescue measures on the high seas. Experience shows
that it is very difficult if not impossible to provide
timely aid at wreckages and ecological disasters at
sea. Use of seaplanes is often limited because of
unfavorable meteorological conditions, whereas use
of helicopters is restricted to coastal areas. Until
now, the main means of rescue (salvage) on water
has been ships finding themselves accidentally near
the disaster area and hardly suitable for this
purpose.

A global sea rescue system is proposed, compris-
ing 50 heavy weight ekranoplans, basing in 12
selected focal base-ports throughout the world.
Each ekranoplan of the system is designed to have
high takeoff/touchdown seaworthiness, correspond-
ing to sea state 5 and enabling its operation on the
open sea during 95% of the time year around. The
cruise speed of each ekranoplan of the system is
400–500 km/h and the radius of operation constitu-
tes 3000–4000 km. The vehicle can loiter for a long
time upon the sea surface when seaborne at a speed
of 15 knots. The rescue vehicle is supposed to bring
to the place of disaster a wide array of rescue means
including rafts and self-propelled cutters and,
possibly, helicopters and bathysphere.

4.1.3. Horizontal launch of the aerospace plane

According to the project developed jointly by
Musashi and Tokyo Institutes of Technology
[39,40], an unmanned self-propelled ekranoplan is
supposed to carry, accelerate to almost half sound
speed and launch a 600-ton rocket plane to a low
earth orbit (horizontal launch), see Fig. 38.

Launching useful payloads into low earth orbit
and expanding the functional capacity of the
aerospace transport systems is one of the major
tasks of the developers of new space projects for the
21st century.
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4.1.4. Other civil applications

Other potential special areas are the replacement
of crews of fishing vessels, geophysical surveys,
express delivery of mail and parcels over the ocean;
coast guard and customs control operations. Ekra-
noplans of moderate sizes can be used to service
coastal waters and to support transportation
systems of archipelagos, carrying passengers and
tropical fruits, fresh fish, etc. Similar considerations
can be found in Kubo [41].

As per Hooker, the ultra-large vehicles of ‘‘Wing-
ship’’ type offer many commercial possibilities, such as
�
 transportation of non-standard commercial pay-
loads of large sizes and weights,

�
 search-and-rescue operations of large scale

�
 transportation of perishable goods in quantity

throughout the world,

�
 high-speed luxury transportation,

�

Fig. 39. Missile WIG vehicle developed by ‘‘Grumman’’ (Pro-

ject).
rapid response to international market fluctua-
tions.

4.2. Naval applications

Analysis of known projects and future naval
applications have confirmed that the above listed
properties of ekranoplans together with their high
surprise factor due to speed, low radar visibility, sea
keeping capability, payload fraction comparable to
similar size ships, dash speed feature and capacity to
loiter afloat in the open ocean make them perfect
multi-mission weapons platforms which can be
deployed forward and operate from tenders, see
Belavin [4], Sommer [42].

Naval ekranoplans can be used as strike warfare
weapons against land and seaborne targets, launch
platforms for tactical and strategic cruise missiles,
aircraft carriers and amphibious assault transport
vehicles. Easy alighting at moderate sea states
makes it possible to utilize ekranoplans as anti-
submarine warfare planes capable of effectively
deploying hydrophones or towed arrays. They can
also be used in a wide variety of reconnaissance and
transport roles. WIG effect vehicles could adapt
themselves to an operational concept of anchorages
all over the world to maintain a forward posture.

4.2.1. Anti-surface warfare

Sustained sea-level operations of ekranoplans
would reduce the horizon-limited detection ranges
of defending airborne early warning systems,
significantly reducing warning time. If the defender
has no airborne early warning assets, mast height
ship radars would not see the ekranoplan until it
almost reached its target.

Back in 1966 the company ‘‘Grumman’’ devel-
oped a project of a 300-ton WIG effect missile
carrier configured as a flying wing with in-flight
variable geometry, the latter being achieved due to a
peculiar design of endplate floats [4]. This project is
shown schematically in Fig. 39.

Another example of a missile carrying strike
ekranoplan is ‘‘Loon’’ with 6 dorsally mounted
‘‘Mosquito’’-type missiles.

From operational and tactical viewpoints, the
ekranoplan has incontestable advantages versus any
other missile-carrying platform, in particular
�
 ekranoplan speeds exceed by an order of
magnitude those of conventional surface ships.
Unlike aircraft, the ekranoplan is not tied to
airports or aircraft carriers and can be disper-
sively based in any coastal area,

�
 unlike aircraft, the ekranoplan is less visible, flies

in immediate proximity to the water surface, and
has large combat payloads (60 tons for the
‘‘Loon’’). Due to its additional capability to
conduct flight operations far from the underlying
surface, the ekranoplan can perform self-target-
ing for larger ranges.
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4.2.2. Anti-submarine warfare

The ekranoplan would be an effective platform
for anti-submarine warfare (ASW), being capable to
detect, localize and destroy submarines at long
ranges from their base. Its significant payload
capability would allow it to carry numerous sono-
buoys, torpedoes and mines. The ekranoplan could
operate in a sprint-drift mode, alighting only to dip
its sonar. In this case the search productivity exceeds
that of any surface ship. In the late sixties Boeing is
known to have developed an anti-submarine WIG
effect vehicle named ‘‘Lowboy’’ configured as an
airplane with low mounted wing, see Fig. 40.

Some estimates have been published stating that
a 900-ton ekranoplan could carry a powerful
low-frequency dipping sonar, sonobuoys, heavy
anti-submarine weapons, self-defense weapons and
sensors, have a dash speed of 400 knots and a
mission endurance of 5 days, assuming 50% loiter
operations.
Fig. 40. Anti-submarine WIG vehicle ‘‘Lowboy’’.
4.2.3. Amphibious warfare

The speed, payload and low-altitude cruising
capabilities of the WIG would enable devastating
surprise assaults. It has also been noted by the
analysts that the WIGs could have reached the
Falkland Islands from Britain in hours versus the
days it took surface forces to arrive during the
conflict. The major difficulty with PAR-WIG
amphibious operations is the actual landing of
men and equipment. Since reduced structural weight
is a key factor enabling efficient WIG flight, the
vehicle cannot be reinforced to allow beaching
without deterioration of its cruise performance.

An example of an amphibious assault craft is the
Russian ekranoplan ‘‘Orlyonok’’. Whereas the ‘‘Cas-
pian Sea Monster’’, notwithstanding such a threaten-
ing nickname, was not a combat vehicle, but just a
huge flying test bed, ‘‘Orlyonok’’ was the first
ekranoplan, specially designed for military purposes.
The vehicle with a combat load of 20 tons has a
cargo compartment length 24m, width 3.5m and
height 3.2m. To enable the embarkation–disembar-
kation of cargos of large dimensions and heavy
military vehicles (e.g. tanks and armored carriers),
‘‘Orlyonok’’ has a unique swing-away bow design.

Operational experience with these amphibious
assault ekranoplans confirmed their anticipated
tactical and technical features, demonstrated their
high level of safety and provides valuable informa-
tion on their basing and maintenance.

4.2.4. Sea lift

Ekranoplans are expected to be quite effective in
providing a sealift function. However, as shown by
some estimates, in order to reliably brave high sea
states, a trans-oceanic WIG would need to be very
large, at least 900 gross weight tons. Even so it is
estimated that one such WIG could deliver more
cargo farther than three 300-ton C-5 aircraft-and do
this while using 60% less fuel.

The WIG would fill the gap between conventional
air-lifters and slow surface shipping. Unlike aircraft,
the WIG would not be dependent upon overseas
bases. Yet, unlike ships, WIG sea-lifters would be
fast, require no escorts, and would be invulnerable
to torpedoes and mines.

4.2.5. Nuclear warfare

The performance characteristics of the WIG
would make it suitable as a launch platform for
tactical and strategic cruise missiles. Its sea skim-
ming cruise capability would allow it to exploit gaps
in low-altitude radar coverage. Furthermore, its sea
loiter feature would give it a flexibility not found in
conventional strategic bombers. In fact, in a crisis,
the WIGs could deploy to mid-ocean and alight on
the surface to maximize their survivability.

The experts estimated that a 900-ton PAR-WIG
carrying four TRIDENT missiles could be periodi-
cally relocated 100 miles or more to a new location
every 4 h, while operating in an area 1000 miles
from its home base for a period of up to 4 days, in
sea state 3 conditions.

4.2.6. Reconnaissance and Patrol

Maybe, the weakest mission application for large
WIGs would be in reconnaissance or patrol. The
limiting horizon resulting from low-altitude opera-
tion would greatly reduce radar or signal intercept
range, and therefore area coverage, to the point
where it might not represent a cost-effective use of
the platform. Even in the strike warfare posture
against ships, WIGs would require targeting in-
formation from other platforms.
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4.2.7. ‘‘Wingship’’ naval missions

Due to its very large payload of 1725 tons, the
Aerocon’s ‘‘Wingship’’ is expected to be able to
provide significant military response capabilities.
The ‘‘Wingship’’ was designed to carry 2000 troops
and 1200 tons of equipment and supplies. This
capability enables the rapid deployment of military
units to any location in the world in a day or two.
As pointed out by Hooker, the value of such early
arrival can mean a significant reduction in the force
required to achieve the same goal. The design
payload of the ‘‘Wingship’’ is of mixed character
and implies low- and high-density items. A repre-
sentative example of the vehicle’s payload includes:
32 attack helicopters, 20 main battle tanks, 305 105-
mm Howitzers, 2000 troops and 1200 tons of
equipment and supplies. To a large extent, the
craft’s design presents the opportunity to form new,
restructured, more-effective marine forces. These
forces would not be restricted to be lightly armored
but could be more heavily armored units capable of
deployment anywhere in a couple of days anywhere
in the world. This would enhance possibilities for
force projections throughout the world and increase
available options for a given situation. Even the fact
that such units exist would greatly contribute to
regional stability throughout the world.

The ‘‘Wingship’’ may also provide a credible long
range, long loiter ASW capability. Its large payload
would increase both the amount and quantity of
corresponding equipment and would permit the
vehicle to remain on station as a rapid response
ASW platform throughout the world’s oceans.
Since the volume and weight restrictions would be
significantly raised, the technologies not available to
airborne ASW platforms may now become acces-
sible on the ‘‘Wingship’’. Military use of the
‘‘Wingship’’ would permit the development of next
generations systems with less restrictions on size and
weight. For example, the current theater missile
systems are designed to be airlifted by the existing
military airlift aircraft of the C-141 or C-130 type.
In the Persian Gulf War, over 400 planeloads were
required to deliver the limited Patriot capability that
was employed during the conflict. With enhanced
theater missile defense systems and a ‘‘Wingship’’
capability, a major improvement in missile defense
capability would be available with far fewer plane
loads delivered and at a reduced cost. Additionally,
the rapid response feature of the ‘‘Wingship’’ would
serve to reduce logical re-supply planning in any
conflict. High speed and load carrying capability
reduces the need to plan far ahead to ensure
adequate supplies in any conflict. This would result
in more flexible military responses to rapidly
changing military situations.

5. Classification of WIG effect craft and some design

parameters

5.1. Classification of WIG effect craft

5.1.1. By aerodynamic configuration

The wish to develop vehicles that exploit the GE
and still have satisfactory longitudinal stability, has
given birth to different aerodynamic configurations.
In fact, the differences in configurations depend on
the method of satisfying the longitudinal stability
requirements (as per Irodov [43], for a statically
stable WIG effect vehicle the center in height should
be located upstream of that in pitch). The basic
configurations are as follows.

5.1.1.1. Tandem configuration. The tandem config-
uration resolves the problem of stability by adjusting
design pitch angles and the geometry of the fore and
aft wing elements. This approach allows shifting the
aerodynamic centers in a proper way for stability,
while using wing profiles with maximum capacity to
exploit the GE. The first tandem scheme self-propelled
model was the 3-ton SM-1 launched in 1960, (see
[12,13]). Although stable in a certain range of height-
pitch parameters the model had a high takeoff speed
and a ‘‘rigidity’’ of flight. Beside, the range in height of
the motion stability turned out to be too narrow. The
tandem scheme has been successfully used by Jörg
(Germany) who developed this configuration for
many years and built most of the tandem scheme
craft (Tandem Aerofoil Boat—TAB) in the world [9].

The advantages of the tandem configuration are:
simple construction, simple tuning of the configura-
tion to secure a given static stability margin,
effective one-channel (throttle) control, small span,
i.e. length-to-beam ratio more similar to ships.

The main disadvantage of this scheme is that it
operates only in GE with static stability margin very
sensitive to the combination of pitch angle and
ground clearance. For vehicles of small size the
maximum operational height is small and sea-
worthiness is limited.

5.1.1.2. Airplane-type wing-tail configuration. The
airplane-type configuration features a large main
wing moving close to the ground and a horizontal
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tail plane mounted on a vertical stabilizer outside the
influence of the GE thus shifting the center of pitch
downstream. The airplane scheme emerged from the
Russian R&D and construction work resulting in the
creation of large ekranoplans of the first generation.
Representatives of this scheme are ‘‘KM’’, ‘‘Orlyo-
nok’’, ‘‘Loon’’ and ‘‘Strizh’’ (see [12,44]).

The main advantages of this configuration are:
large range of heights and height–pitch combinations
for which the vehicle sustains stable flight (hence a
capability to perform an emergency ‘‘dynamic
jump’’), possibility to ‘‘hop’’ and provide banking
necessary for efficient turning maneuvers, possibility
to efficiently apply power augmentation at takeoff.

Large wing loadings leading to high-speed (this
counterbalances the loss of the transport productiv-
ity due to low payload fraction).

The disadvantages are: very large weight penalty
for having a high-mounted sufficiently large tail unit
(up to 50% of the area of the main wing), which
contributes only insignificantly to the lifting capa-
city of the craft while adding additional viscous
drag, relatively low lift-to-drag ratios (economic
efficiencies) due to the large non-lifting area fraction
as compared to high lift-to-drag ratio of the isolated
main wing; large structural weight and, conse-
quently, large empty weight fraction.

The special case of an airplane (wing-tail)
configuration is the Lippisch aerodynamic config-
uration featuring the main wing of a reverse delta
planform and a relatively small tail unit [45]. The
Lippisch idea of using reverse delta wing for the GE
application can be interpreted as a (rather success-
ful) attempt to restrict the longitudinal shifting of
the center of pressure of the vehicle in response to
variation of height. The latter effect is due to a
linear decrease of the local chord of the main wing
from the root chord section toward the tips. This
configuration was employed in Lippisch vehicles
proper (X-112, X-113, X-114 [46]), its derivatives
developed by Hanno Fischer (Airfish craft family
[19]) and also in some vehicles developed in other
countries (Eska in the USSR, the XTW craft family
in the People’s Republic of China, etc.)

The advantages associated with the Lippisch-type
craft are: high lift-to-drag ratio (around 25 for
X-113), large range of heights and pitch angle of
stable flight, capability to perform ‘‘dynamic jump’’
and efficient turning (due to ‘‘hop-up’’ capacity).
The aforementioned advantages are similar to what
was said before about the aircraft configuration.
However, the high lift-to-drag efficiency is a specific
feature of the Lippisch configuration. Specific
disadvantage of the original Lippisch-type vehicles
is their overpowering due to inefficient takeoff aids
and the absence of power augmentation.

5.1.1.3. Flying wing configuration. The ‘‘flying
wing’’ configuration is characterized by remarkably
reduced non-lifting components, and a very small
(or absent) horizontal tail. Here the tendency is seen
to convert the whole craft into a lifting surface,
resolving the problem of longitudinal stability by
special profiling of the lower side of the wing or/and
by making use of an automatic stabilization/
damping system.

The ‘‘tailless’’ configuration of this type was
proposed by Alexeev in the 70s [14] However, it was
difficult to implement his ideas at that time and the
scheme then was abandoned. Examples of ‘‘flying
wing’’-type vehicles are: ‘‘Amphistar-Aquaglide’’
(Russia) and, recently a WISE vehicle under testing
in Japan. Both of these crafts have natural stability
due to smart profiling of the wing section. Formally,
some other vehicles can be assigned to this type (e.g.
KAG-3, Japan) although they do not have the
‘‘flying wing’’-type stability characteristics.

Advantages of the scheme are: efficient utilization
of the vehicle to take maximum advantage of GE;
low empty weight fractions, especially for vehicles
of small aspect ratio.

Disadvantages of this configuration are: suppo-
sedly low range of height–pitch combinations to
achieve longitudinal stability (without the use of
automatic control systems), relatively low opera-
tional flight heights, additional difficulties in pro-
viding structural integrity of a water-based all-wing
vehicle; inefficient use of flaps which (additionally)
may deteriorate the static stability of motion when
employed improperly.

5.1.1.4. Composite wing configuration. The ‘‘com-
posite wing’’ configuration [14] seeks to combine the
advantages of the airplane configuration and the
‘‘flying wing’’ configuration, thus achieving high
takeoff efficiency when using power augmentation.
A ‘‘normal’’ composite wing has a central wing of
small aspect ratio (centroplan) with endplates and
side wings of high aspect ratio. It employs the idea of
profiling the lower side of the main wing to reduce
the tail unit. The overall aspect ratio of the
‘‘composite wing’’ (4–5) exceeds that of the main
wing of the vehicles of the first generation (2–3) and
is by far larger than that of the tandem configuration
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Fig. 41. Wing loading of wing-in-ground effect craft versus mass

of the vehicle (circles—existing craft, crossed circles—WIG

concepts, triangles—jet aircraft).
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as well as that of the existing ‘‘flying wings’’ (less
than 1.5). The latter property results in much higher
lift-to-drag ratios and, in combination with
S-shaping of the wing sections provides higher
efficiency and range. The small aspect ratio of the
centroplan provides maximization of the efficiency
of the power-augmented takeoff. An example of the
vehicle based on the ‘‘composite wing’’ scheme is the
MPE (Marine Passenger Ekranoplan) scaled series,
e.g. the 450-passenger 400-ton ekranoplan MPE
[12,14] has a reduced tail area of about 27% of the
main wing, and increased range of 3000km.

5.1.2. By altitude range: A, B and C types (IMO

classification)

The ongoing difficult effort to obtain certification
of WIG effect vehicles by the certification agencies
and, in the long run, acceptance by the general
public resulted so far in a certification of this craft
based on the formal division of competence and
responsibility between the IMO and International
Commercial Aviation Organization (ICAO) [47].
For the time being the vehicles are divided into A, B
or C types. According to this grouping, the vehicle
belongs to A type if it is designed to operate only in
(attached) GE mode (competence of IMO). The
vehicles able not only to fly in GE but being capable
of performing a temporary ‘‘dynamic jump’’ bring-
ing them out of GE are ascribed to group B (joint
authority of IMO and ICAO). Finally, the craft
designed to operate both in and out of GE belong to
group C (authority of ICAO).

5.1.3. By physics of the GE phenomena

One of the difficulties of defining spheres of
competence of the IMO and ICAO, in particular as
regards the A and B types, consists in finding
reasonable definition of the absolute height of the
‘‘GE’’ zone. Some definitions introduced as of today
are based on an assumption that the GE ‘‘works’’
starting from a certain relative ground clearance
(e.g. 50% of the chord) and reporting the size
(length of the chord) of the vehicle. However, as
indicated in [1] and discussed in other works, e.g.
[48], for a given size of the vehicle, the manifestation
of the GE depends on its configuration and ratio of
lateral and longitudinal dimensions. Rozhdestvens-
ky [1] introduced notions of chord-dominated

(CDGE) and span-dominated (SDGE) GEs. These
notions reflect different physics of CDGE and
SDGE. In the first case the wing responds to
smaller ground clearances by flow stagnation under
the wing, and subsequent growth of both lift and
drag coefficients resulting eventually (for properly
designed craft) in an enhanced lift-to-drag ratio. In
the second case the GE reveals itself in reduced
induced drag and enhanced lift, this combined effect
finally also leading to increased lift-to-drag ratio.
Therefore, it seems more appropriate to introduce a
physical definition of the GE zone (in a way similar
to the definition of the boundary layer thickness in
the Prandtl theory). For example, the GE zone for a
vehicle to be certified by the authorized societies can
be defined as a distance from the (flat) ground below
where the lift force has a (say) 30% increase as
compared to the out-of-GE case for the same
vehicle. Within this definition, use of the similarity
theory allows one to determine the GE zone
through model experiments and prescribed absolute
dimensions of the craft long before construction of
the scaled models and full-scale prototypes.

5.2. Some design parameters

The efficiency of WIG vehicles in terms of their
range, fuel consumption, capacity to takeoff from
water, ride quality when flying over waves and
durability of structure is dependent upon the design
wing loading w ¼M=S and a density factor which
can be defined as mf ¼M=S3=2, where M is the mass
of the craft and S represents the wing’s reference
area. Figs. 41 and 42 show trends in behavior of the
wing loading and density factors for existing and
concept ekranoplans.
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Fig. 42. Density factor of wing-in-ground effect craft and jet

aircraft versus mass of the vehicle (crossed circles—existing

WIGs, circles—WIG concepts, triangles—jet aircraft).

Fig. 43. Lift-to-drag ratio of a rectangular wing versus relative

ground clearance (l ¼ 2, different symbols correspond to

different relative thickness).
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Plotted on the same graphs is aircraft data.
Fig. 42 shows that the magnitude of the density
factor significantly depends on the aerodynamic
configuration of the vehicle.

As seen from the figure, the WIG effect vehicles
of flying wing and composite wing configurations
tend to have much lower density than the WIGs of
airplane configuration and jet planes. This result
shows that by adopting the novel aerodynamic
configurations one can hope to reduce the penalties
of the square-cube law which predicts an inevitable
growth of the empty weight fraction with increase of
the dimensions of the vehicle.

6. Aerodynamic aspects

6.1. Lift, drag and their ratio

For a properly designed lifting surface, the effect
of the ground brings about augmentation of lift for
smaller ground clearances, Fig. 43. Wing profiles
with an almost flat lower surface (classical examples
are Clark-Y and NACA 4412) produce optimum
GE. Profiling of the foil for better longitudinal static
stability usually results in lower lift coefficients
which is not necessarily bad for cruise flight. For a
given wing area the lift is larger for a larger aspect
ratio wing. Flaps are not as efficient in GE as they
are out-of-ground effect. The drag is mostly
determined by its induced vortex drag component
and it depends on the reciprocal relationship of
chord, span and ground clearance, etc. Experiments
and theory (including CFD analysis) show that, for
a fixed pitch angle, in some cases (chord-dominated
GE) the drag increases as the wing moves closer to
the ground. In other cases (span-dominated GE) the
drag decreases with decreasing ground clearance. In
all cases, for a properly designed lifting system the
lift-to-drag ratio tends to increase with decrease of
the ground clearance.

Also, in all cases for a properly designed lifting
surface the drag decreases with decreasing ground
clearance for constant lift. The fact that near the
ground the lift-to-drag ratio increases both with
increase of the aspect ratio and decrease of the
ground clearance provides more flexibility in select-
ing optimal design solutions than for the conven-
tional airplane.

6.2. Influence of geometry and aerodynamic

configuration

The lift-to-drag ratio can be quite large for an
isolated WIG effect, but it drops significantly when
the wing constitutes part of the integrated vehicle. The
resulting loss of aerodynamic efficiency is espe-
cially remarkable for a vehicle of airplane configura-
tion. As per Kirillovikh [11] the lift-to-drag ratio of a
wing of aspect ratio 2–3 flying at a relative ground
clearance of the order of 20% of the chord would be
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Fig. 45. Relative tail area of some wing-in-ground effect vehicles.
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around 35–45, i.e. quite acceptable for creating an
efficient transport platform. Upon integration of the
vehicle (of airplane configuration), the losses of lift-to-
drag ratio occur due to presence of the hull (40%) and
pylons (15%) holding PAR engines and the (non-
lifting) tail (5%), Fig. 44. Eventually, the resulting lift-
to-drag ratio may drop almost 65%, i.e. in this
example 12–16.

WIGs of the first generation have quite a large
horizontal stabilizer needed to trim out the pitching
moments experienced in GE, Fig. 45. While only
negligibly contributing to the lifting capacity of the
craft, use of the tail planes results in additional
weight and drag.

As in the out-of-ground effect case the enhance-
ment of the aerodynamic efficiency is due to the
suction force at the leading edge. The available test
and theoretical data show that leading edge flow
separation becomes more probable in GE. Hence
more attention should be paid to a thorough
profiling of wing sections of the WIG effect vehicle.
Some interesting comparative estimates of the
maximum lift-to-drag ratio and the corresponding
optimal design lift coefficient can be obtained on the
basis of EGE theory [3]. In particular, this analysis
shows that the more one gains in aerodynamic
efficiency by flying closer to the ground, the smaller
should be the design cruise speed of the vehicle.
Secondly, going for a larger range entails a certain
Fig. 44. Lift-to-drag ratio of wing-in-ground effect vehicles of

different configurations.
loss in lift-to-drag ratio compared to its maximum
possible value. The said loss is of the order of 15%.
It is interesting to discuss the maximum lift
coefficient which can be realized for a WIG effect.
The larger this coefficient the more efficient is the
process of taking off, the smaller is the speed of
detachment from water, with subsequent reduction
of the weight fraction. Whereas out-of-ground effect
Fig. 46. Influence of endplates upon lift coefficient of rectangular

wing of aspect ratio for different ground clearances.
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of the maximum lift coefficient for the best transport
airplanes is reported to be of the order of 2 using
Fowler flaps, the maximum lift coefficient of the
WIG effect is of the order of 1.6. The associated
challenge consists of reducing the cruise lift coeffi-
cient, thereby extending the range and increasing the
cruise speed of the vehicle for a given wing loading.
Ref. [49] provides some data on the takeoff and
cruise coefficients of some WIG effect vehicles.

6.3. Influence of endplates

The endplates are a specific feature of WIG effect
craft as compared to the aircraft and seaplanes.
Because the ram effect (chord-dominated GE) is due
to the growth of the pressure difference below and
above the vehicle (largely at the expense of the
latter), the endplates become an effective means to
hinder the leakage of the air from under the wing.

Both theory and tests demonstrate the following
peculiarities of use of the endplates:
�

Fig

win

Fig

by
Use of endplates leads to noticeable augmenta-
tion of the effective aspect ratio [50] thus making
them ‘‘new players’’ in the design process of the
WIG as compared to the aircraft (Fig. 46). There
exist sufficient data prompting designers how to
size endplates and position them chordwise.

�
 The smaller the aspect ratio the more efficient are

endplates.
. 47. Possible configurations of the endplate at the tip of the

g.

. 48. Different longitudinal positions of endplates investigated

Yamane.
�

Fig

pre

gro

line
Most of the endplate effect comes from their part
on the bottom side of the wing.

�
 In EGE, as indicated by Rozhdestvensky [3], the

endplates may be designed with moving (tiltable
around an axis parallel to the center-plane,
retractable) parts to provide control of the
vehicle’s static stability margin and motion.

�
 The endplates lead to shifting the optimal

(design) lift coefficient toward larger magnitudes.

Yamane et al. conducted an investigation to see
how the longitudinal position of the endplate
influences the characteristics of the wing. Five
investigated positions of the endplate with respect
to the wing are represented in Figs. 47 and 48. The
highest increase of the lift coefficient due to the
endplate occurred for the endplate position EP00,
that is when the center of the endplate coincided
with the center of the wing. The nose down moment
coefficient increased for successive shift of the
endplate from the leading edge toward the trailing
edge of the wing.
6.4. Influence of the planform and the aspect ratio

The present state of knowledge suggests that the
optimal loading distribution of the main wing of the
WIG tends to become parabolic, rather than elliptic. In
. 49. Relative lift coefficient and position of the center of

ssure for a rectangular wing versus aspect ratio in the extreme

und effect (continuous line) and out-of-ground effect (dashed

) cases.
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terms of the optimal platform it suggests a parabolic
planform for a wing of large aspect ratio, and, as found
by Widnall, a semielliptic planform with straight
trailing edge, for a wing of arbitrary aspect ratio [51].

Interesting comparisons can be made concerning
the influence of aspect ratio upon lift coefficient in
ground and out-of-ground effect on the basis of
EGE theory, Fig. 49.

The aspect ratio affects the efficiency in a way
similar to the out-of-GE case, i.e. the larger the
better. However, sticking to smaller aspect ratios
(with efficiency enhanced by endplates) pays back
by decreased structural weight and conveniences
associated with use of the marine transportation
infrastructure.

6.5. Influence of waves in cruising flight

There are several major situations that need to be
considered for the case of a WIG effect vehicle
operating in a sea environment
�
 floating and drifting in waves,

�
 takeoff in waves,

�
 landing in waves,

�
 cruise flight over waves,

�
 occasional impact of the waves and, in excep-

tional case, of rogue waves upon the vehicle and
its elements.

We will discuss herein only aerodynamic effects
experienced by WIG effect vehicles operating in
close proximity to the sea surface. The results of
experiments and theoretical (computational) inves-
tigations of this kind of unsteady motion of a lifting
system show that
�
 A wing flying in proximity of a wavy surface
experiences an additional unsteady lift which
changes periodically.

�
 The net wave-induced lift force for a wing with

flat lower side, averaged over the wave period, is
positive. The latter circumstance explains why
the wing catapulted along such a wavy surface
tends to climb. The effect under discussion is due
to the nonlinearity of the GE phenomena
whereby the average lift increment due to wave
crests is somewhat larger than the lift decrement
due to wave troughs.

�

Fig. 50. Amplitude of unsteady lift coefficient versus relative

wavelength.
The amplitude of the wave-induced unsteady
force depends on the ratio of the wave length to
the chord of the wing. For practical Strouhal
numbers, a reduction of this ratio results in a
decreased amplitude, see Fig. 50.

�
 The wave-induced response of the vehicle de-

pends on the vehicle’s density, ground clearance
and pitch angle, and, naturally, on the wave
length as a fraction of the wing chord and on the
wave amplitude.

�
 There exists for every vehicle and its design

ground clearance a resonant wave which is longer
for vehicles of high density, at larger relative
ground clearance and smaller associated
‘‘spring’’ property, that is for a smaller derivative
of the lift coefficient with respect to ground
clearance. Because of their large density, large
vehicles do not ‘‘notice’’ the aerodynamic influ-
ence of the waves unless they encounter waves of
very large length.

�
 For the high Froude numbers at which the WIG

vehicle is normally operating, there is no notice-
able deformation of the water surface. It means
that in this case the water surface behaves as if it
were a solid wavy wall.

�
 More significant aerodynamic impact upon the

wing may occur due to vertical gusts generated
by orbital motion of the air particles excited by
the wavy free surface. Research shows that this
effect displays itself in proportion to the
wave amplitude, magnitude of wind speed and
difference in velocity of the vehicle and the wave.
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In practice, roughness of the sea surface leads to
lower efficiency of the vehicle because it has to

increase the ground clearance in order to avoid
contact with waves crests. On the other hand, a
conclusion to draw is obvious: start design of the
wing with specification of the required seaworthi-
ness and conceive the craft large enough to retain
sufficient lift-to-drag ratio. Some experimental and
theoretical data on the influence of waves on the
aerodynamics of WIG effect can be found in
[52–56].

6.6. Compressibility effects

For large vehicles of high wing loading, i.e.
advancing with very high cruising speeds, the
compressibility of the air may have to be consid-
ered. Note that, for instance, for a cruising speed of
550 km/h (KM) the associated Mach number is
0.46. The effects of compressibility were investi-
gated both experimentally and theoretically. But it
can be stated that little is still known with regard to
GE at high subsonic Mach numbers.

Application of the Glauert factor to account for
the compressibility using linear as well as EGE
theory [3] reveals more pronounced (at least for a
wing with flat lower surface) effect of Mach number
than for the identical wing out-of-ground effect.
This can be explained using the concept of
Fig. 51. Lift-to-drag ratio of a rectangular wing (l ¼ 2) versus

Mach number.
‘‘equivalent’’ wing moving in the incompressible
fluid at a smaller ‘‘equivalent’’ ground clearance,
hence higher lift coefficient. The results obtained for
lift-to-drag ratio are somewhat contradictory. There
are some indications based on existing test data
indicating that some improvements of the lift-to-
drag ratio could be achieved at high subsonic Mach
numbers [57], Fig. 51.

The EGE theory, in its turn, predicts (for a flat
wing) monotonous decrease of the efficiency with
increasing Mach number.

6.7. Aero-elastic effects

Elasticity may become a consideration for vehi-
cles of large dimensions as well as in the case of use
of composite materials and fabric [12,57]. It should
be accounted for in the structural design of
ekranoplans as these vehicles have extensive and
elastic lifting surfaces equipped with control sur-
faces and operated at high speeds in air and water.
In principle, the problems of aero-elasticity are
treated similarly to those of conventional aircraft,
i.e. static aeroelasticity effects (reversal of control),
flutter and dynamic response of the structure. One
of the important problems of aero-elasticity of large
vehicles with hydroskis is associated with dynamic
stability of the system ‘‘hydroski device plus elastic
ekranoplan’’ when the craft performs a transient
motion with extended hydroski. In this case, in the
course of takeoff and landing, at certain speeds an
intensive oscillatory response can occur. It is
accompanied by a high level of dynamic bending
moments and overloads on the hull and a significant
variation of the resistance forces in the shock-
absorbing hydro-cylinders governing the extension
and retraction of the hydroski. This process is
characterized by a coupled elastic oscillations of the
hull and dynamic deviations of the hydroski which
occur with a frequency close to the first vertical
bending mode of the hull.

In the analysis of the static aeroelasticity of
ekranoplans, one should note that the bending and
torsion stiffnesses of its structural sections are
higher than those of conventional aircraft structures
for the same mass and geometric dimensions.
Although the cruising speeds of large ekranoplans
were about 150 km/h below the estimated speed of
flutter, the accumulated experience indicates that
due to aero-elastic effects the lift-to-drag ratio of the
craft may decrease substantially. Theoretical inves-
tigations of aero-elastic instability of wings in GE
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(Buyvol and Ryabokon, Efremov, Rozhdestvensky,
Lifenko and Rozhdestvensky) showed that (at least
in EGE) both speeds of flutter and divergence
diminish with decrease of relative ground clearance.

Special investigations are required to study the
dynamic behavior of flexible lifting surfaces
(PARAWIG). Simplified analysis of the latter
effects has been performed in [3].

6.8. Peculiarities of the aerodynamics of formation

flight

The wake systems generated by ekranoplans in
formation flight may significantly influence the
vehicle aerodynamics. Besyadovskiy [58] studied
these effects for different relative positions of two
vehicles. In particular, he explored the cases when
the vehicles moved in the same and different vertical
planes and had different relative flight heights.
Some of the conclusions are:
�
 the leading ekranoplan experiences a certain
decrease in lift coefficient and some diminution
of static stability margin,

�
 in most of the cases one observes some augmen-

tation of (static) stability of the following
ekranoplan,

�

1In [3], the term extreme ground effect (EGE) is associated with

relative distances from the ground less than 10%.
the worst case may occur when the centerline
of the following ekranoplan is in the same
vertical plane as the side edge of the leading
ekranoplan.

7. Mathematical modeling of aerodynamics

A rational approach to the design of any
unconventional vehicle, for which the existing
prototype data are restricted, should be based on
an appropriate mathematical model, reflecting the
essential features of the craft under consideration.

Ekranoplans can be viewed as such an unconven-
tional type of superfast water transport, utilizing the
favorable influence of the underlying surface
(ground) upon its motion stability, lift-to-drag ratio
and, consequently, on its economic efficiency,
expressed in terms of fuel consumption and direct
operating costs.

Today’s remarkable growth of computing power
combined with CFD (computational fluid dy-
namics) allows a quite accurate prediction of the
aerodynamic behavior of any given configuration of
WIG effect vehicles. A short survey of the
corresponding numerical approaches and results
obtained with Euler and Navier–Stokes solvers can
be found in [3]. In spite of all known advantages of
the CFD methods, there still exists a need for
approximate engineering approaches allowing fast
evaluation of the quality of the system, providing a
simple explicit representation of the aerodynamic
response and a plausible basis for design optimiza-
tion. Such approaches often employ analytical
(asymptotic) methods. A survey of asymptotic
methods for the analysis of lifting flow problems
in GE and a theory of the aerodynamics of EGE1 is
presented in the monograph ‘‘Aerodynamics of a
Lifting System in Extreme Ground Effect’’ by K.V.
Rozhdestvensky [3].

The first asymptotic approaches relevant to the
(span-dominated) GE phenomena employed
Prandtl’s lifting line model and its mirror reflection,
e.g. Wieselsberger [59], Serebriyskiy [60], etc. In this
research, the distance of large-aspect-ratio wing
from the ground was considered to be of the order
of span, whereas the chord of the wing was assumed
much smaller than both the span and the ground
clearance.

Because the GE depends on the relative distances
(h) of the wing from the underlying surface, it is
reasonable to seek approximate solution of the
corresponding flow problem in the form of an
asymptotic expansion in terms of a small parameter
related to h.

Some of the earlier approaches were based on
asymptotic expansions with respect to a small
parameter inversely proportional to the ground
clearance. Keldysh and Lavrent’’ev applied the
parameter 1=h to treat the flow past a hydrofoil
moving near a free surface. A similar expansion
was used by Plotkin and Kennel [61] to obtain the
lift coefficient of an arbitrary thin aerofoil in
the presence of a ground plane, and by Plotkin
and Dodbele [62] and Plotkin and Tan [63] to
solve the flow problems for large-aspect-ratio
wings and slender wings in motion near a solid flat
wall.

It is obvious that an expansion in 1/h is
appropriate at distances from the ground which
are larger than the chord (or the span) of the wing.
However, because WIG effect vehicles normally
operate at distances below 25% of the chord (span),
it is practical to introduce a small parameter



ARTICLE IN PRESS
K.V. Rozhdestvensky / Progress in Aerospace Sciences 42 (2006) 211–283 239
providing convergence of the solution series at
distances less than the chord (span). Panchenkov
[64] obtained asymptotic solutions of a set of lifting
flow problems involving interfaces (free surface and
solid wall) in terms of the parameter t ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4h2
p

� 2h which allows to improve conver-
gence of the series solution. One can see that t tends
to 1 when h goes to zero and tends to 1/4h when h

tends to infinity.
Because WIG effect vehicles have maximum

aerodynamic efficiency in very close proximity to
the ground (i.e. at distances essentially less than the
chord and/or the span) it is practical to use an
asymptotic expansion of the flow problem solution
around the limiting case h ¼ 0. This can be done
with use of the method of matched asymptotic
expansions (MAE) and leads to a theory of EGE.

It turns out that for h! 0 the mathematical
description of the flow can be simplified. In
particular, the 3-D flow problem acquires a 2-D
description and the 2-D problem acquires a 1-D
description. Physically, in the case of RAM wing, it
means that close to the ground the major contribu-
tions to its aerodynamic characteristics come from
the channel flow between the wing and the ground.
Thus, one may speak of a hydraulic nature of
(chord-dominated) GE.

Apparently, Strand etal. [65] were the first to
indicate the channel flow nature of the
highly constrained flow between the wing and the
ground. They stressed the point that in the two-
dimensional case the channel flow becomes one-
dimensional. However, no method was presented
then to determine the total amount of mass flow
under the wing without solving the entire flow
problem. It is interesting that the idea of using
channel flow (hydraulic) theory to determine the
increase of lift due to GE was also found in the
notes of a famous German engineer Alexander
Lippisch and was then published by his colleague
Mr. Borst [66].

If there are no losses, the variation of pressure can
be found for a two-dimensional wing based on a
channel flow consideration using Bernoulli’s law
and the continuity equation. Requiring that the
velocity and pressure at the wing traili ng edge equal
the free stream values, one can easily obtain the
following formulae for the pressure coefficient along
the chord and the lift coefficient

CpðxÞ ¼ 1� ½h0=hðxÞ�2; CL ¼ 1�

Z 1

0

h2
0 dx

h2
ðxÞ

,

where hðxÞ is a local clearance between the foil and
the ground and h0 is the trailing edge height.
Lippisch notes that when applying these formulae,
the trailing edge height h0 should not be assumed to
be equal to the geometric value, as the boundary
layer builds up causing a reduction in the gap
height. Thus, even for zero angle of attack when the
bottom surface is parallel to the ground, there can
be a lift increase due to ram. So, the same formulae
can be used with both the local and the trailing edge
clearance corrected for the (displacement) thickness
of the boundary layer. A flow leakage occurs when
there are gaps between the tips of the endplates and
the ground. This flow leakage results in a corre-
sponding reduction of the ram lift. In the theory of
Lippisch, as exposed by Borst, the magnitude of the
ram lift loss due to the endplate leakage was
determined by finding the ram lift needed to achieve
agreement with test data after introducing correc-
tions into two-dimensional airfoil data.

The first MAE applications for lifting flows near
the ground were introduced by Widnall and
Barrows [67] in linear formulation, examples
including a flat plate of infinite aspect ratio and a
flat wing of semielliptic planform. Extension of the
MAE approach to a linear unsteady flow case
accounting for wing aspect ratio, flaps, endplates,
slots and compressibility effects was carried out by
Rozhdestvensky [44,56,68–79]. Beside the lift and
moment coefficients, he calculated the induced drag
coefficient for both steady and unsteady cases with
full and partial realization of the leading edge
suction force.

Kida and Miayi [80] applied the MAE approach
to solve the flow problem for a non-planar wing of
finite span in motion very close to the ground and
for a jet-flapped WIG effect.

It should be mentioned that at very small relative
ground clearances, even slight changes in geometry
and kinematics of the lifting system may result in
considerable perturbations in the channel flow
under the wing and, therefore, in the aerodynamic
response of the lifting system. Hence, the theory
should account for nonlinear effects. For the case of
the extreme (curved) GE in a compressible isen-
tropic lifting flow, an unsteady, nonlinear,
3-D treatment of the problem was given by
Rozhdestvensky [68]. The influence of waves on
the underlying surface was studied for both the
case of translational motion of the wing in a
direction normal to the wave front and for an
arbitrary course angle, respectively [74]. Later, a
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leading-order nonlinear formulation was developed
by Tuck for two-dimensional (1980, unsteady [81])
and three-dimensional (1983, steady[82]) incompres-
sible flows. Newman [83] was able to represent the
channel flow beneath the lifting surface by a simple
nonlinear solution in a cross-flow plane with
appropriate conditions imposed at the trailing and
leading (side) edges.

As indicated previously, due to the dominating
influence of the flow between the lower surface of
the wing and the ground upon the aerodynamics of
lifting surfaces in EGE, the corresponding three-
dimensional flow problem can be reduced to that in
two dimensions in the planes parallel to the
unperturbed position of the underlying surface.
Thus, the EGE theory forms an interesting comple-
ment to Prandtl’s lifting line theory and Jones’’
slender body theory in which the flow fields are
basically two-dimensional in the transverse and
longitudinal planes, respectively.2

Further simplification can be introduced for a
wing with endplates moving in close proximity to
the ground. In this case, the flow description can be
shown to be predominantly one-dimensional. A
simple one-dimensional nonlinear mathematical
model of the flow past a rectangular wing with
small relative clearances under the tips of the
endplates was derived and then validated experi-
mentally by Gallington et al. [84]. This approach
was based on an assumption that the (channel) flow
parameters are independent of the chordwise
coordinate and on the observation that the leaking
flow escapes from under the tips of the endplates
into the external region with atmospheric pressure.
The author also assumed the occurrence of separa-
tion at the tips of the endplates.

Though very simple, Gallington’s flow model
agreed qualitatively with experiments and provided
interesting similarity criteria. An important conse-
quence of the introduction of this model from the
theoretical viewpoint was that it helped to overcome
a paradox of the infinite (logarithmic) increase of
the flow velocity at the gap encountered by other
researchers. One of the restrictions of Gallington’s
one-dimensional model ensues from the assumption
of the constancy of the loading along the chord. As
a consequence, the model cannot be used for the
prediction of the longitudinal moment and char-
acteristics of stability. Secondly, it is confined to the
case of steady motion, whereas the analysis of the
2This was first indicated by Widnall and Barrows [67].
transient motion of WIG effect vehicles is of utmost
importance. Rozhdestvensky [3,85] extended Gal-
lington’s nonlinear mathematical model of channel
flow, taking into account the chordwise distribution
of flow velocity (pressure) and introducing unsteady
effects.

The aforementioned research effort is associated
with chord-dominated EGE (RAM wing) in which
one observes growth of pressure on the lower side of
a properly designed WIG effect. In the case of span-
dominated EGE, it is convenient to consider
integral formulations. Rozhdestvensky [86] pro-
vided an analysis of the steady flow past a lifting
line and a tandem, comprising two lifting lines, in
the immediate proximity to the ground. In the
former case, for a vanishing clearance-to-span ratio,
he was able to reduce Prandtl’s integro-differential
equation to a simple ordinary differential equation
for the spanwise loading distribution. In the latter
case, a system of two integro-differential equations
degenerates for vanishing relative (with respect to
span) ground clearance into a corresponding system
of ordinary differential equations of the second
order. In both cases, the solution of the resulting
differential equations, subject to conditions of zero
loading at the tips of the wing, were obtained in
analytical form.

The most complete account of the formulations
and main results of EGE theory can be found in
Rozhdestvensky [3]. Some of the main conclusions
from there are listed below
�
 At small relative clearances, the effective aspect
ratio is a function of three factors: geometric
aspect ratio, ground clearance and gaps under
the tips of the endplates. Thereby, the design
solutions become remarkably diversified as com-
pared to the out of GE case.

�
 The aerodynamics of the lifting system in EGE is

dominated by the channel flow under the main
wing(s). Hence, the aerodynamics, and especially
the lifting capacity and longitudinal stability of
the vehicle largely depend on the instantaneous
geometry of the gap between the main wing and
the underlying surface.

�
 EGE is a highly nonlinear phenomenon. There-

fore, superposition of different effects is not
possible. For example, the effects of thickness
and curvature cannot be studied separately or
added. The combined influence of thickness and
curvature is largely defined in this case by the
shape of the lower side of the wing. Nonlinearity
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also gives rise to non-zero components of the
time-averaged vertical forces acting on the main
lifting system when the vehicle performs an
unsteady motion in immediate proximity to the
ground. These non-zero lift contributions can be
directed either toward the ground or upwards.
For example, the motion of the main lifting wing
with a flat lower surface over wavy ground at a
positive pitch angle gives rise to a non-zero
averaged lift increment.

�
 Influence of compressibility is more pronounced

in GE than out of GE. In particular, for a
subsonic flow past wings of moderate and large
aspect ratio in close vicinity of the ground an
increase of Mach number entails a larger incre-
ment of lift than that for the out-of-ground effect
case. To understand how important it may be to
account for compressibility when designing an
ekranoplan, it is worthwhile to note that the
cruise speed of KM constituted about 40% of the
speed of sound at sea level. At larger speeds
compressibility effects can become more dra-
matic with possible formation of shock waves.

�
 In EGE, the influence of the aspect ratio and

unsteadiness of the flow upon the aerodynamics
of the main wing are mostly caused by free
vorticity (steady and unsteady) within the wing’s
planform.

�
 Similar to airplanes, optimum lift-to-drag ratio

for an ekranoplan requires the realization of the
suction force at the leading edge. Hence, the
profiling of the leading edges of the lifting system
designed to operate in EGE should be done very
thoroughly. All available means of boundary
layer control should be applied to avoid separa-
tion. It can be shown that when a wing
approaches the ground the probability of occur-
rence of separation increases.

�
 Optimal design solutions in EGE differ qualita-

tively from corresponding airplane results.
Whereas for an unbounded fluid the optimal
spanwise loading distribution is known to be
elliptic, for a lifting surface in EGE the optimal

loading becomes parabolic. Correspondingly, the
optimal geometry of the lifting system becomes
different from the unbounded fluid case. For
example, minimization of the induced drag of a
large-aspect-ratio wing in EGE requires a para-
bolic rather than elliptic ‘‘twisting’’, i.e. spanwise
distribution of the angle of attack.

�
 In EGE even a small blockage of the flow near

the trailing edge leads to a noticeable reduction
of the longitudinal static stability margin for foils
whose lower sides are designed to enhance
stability.
8. Stability of longitudinal motion

One of the major technical difficulties a developer
of a WIG effect vehicle has to overcome is related to
static and dynamic stability of motion and, in
particular, the pitch stability. As in the case of the
airplane, the subject of stability can be divided into
static and dynamic stability.

Static stability means that when a vehicle is
disturbed from its equilibrium, it will tend to
return to the state of equilibrium.

Essentially, the static stability is determined by
the direction of forces and moments acting upon the
vehicle right after application of perturbations.

Dynamic stability implies, that following a
disturbance an undamped vehicle will oscillate
about the state of equilibrium, but eventually, the
oscillations will die out and the vehicle returns to
its steady state of equilibrium.

Whereas the static stability can be evaluated

through assessment of the tendency of the vehicle
to restore the initial state of equilibrium just after
action of perturbations, in dynamic stability analy-
sis one is concerned with the time history of the
motion of the vehicle after it has been disturbed
from its equilibrium point. As a matter of fact, the
static stability does not necessarily imply the
existence of dynamic stability. However, if the
vehicle is dynamically stable it must be statically
stable. The decay of the disturbance with time
indicates that there is resistance to the motion,
which can be associated with dissipation of energy
(positive damping). If the energy is being added to
the system, one deals with the case of negative
damping. If the energy of the system were the same
versus time, this would correspond to zero damping
case. It is of interest both for the designer and for
the operator of the vehicle to be able to measure the
degree of dynamic stability. The degree of dynamic
stability is normally specified by the time it takes a
disturbance to be damped to half of its
initial amplitude. Similarly, the measure of dynamic
instability can be characterized as the time it
takes for the initial amplitude of the disturbance
to double. In the case of oscillatory response of
the system to a perturbation, the frequency of
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the resulting perturbed motion is also quite
important.

The problem of ensuring stability of the craft
hindered many past developments. As referred to
earlier, to ensure static longitudinal stability of his
modified ‘‘Aerosledge No. 8’’. Kaario equipped the
vehicle with stabilizing aft beams, which were
supposed to slide along the snow and water surface.
For the same reason, Troeng fixed a small hydrofoil
at the rear part of his craft. To ensure static stability
of his vehicle Weiland applied a tandem layout
comprising two wings of high aspect ratio and a
horizontal stabilizer with an elevator. However, as
indicated earlier, the prototype vehicle ‘‘Small
Weiland Craft’’ had a serious accident during the
trials, supposedly due to instability [4].

It is known that in the mid-seventies, in spite of a
considerable effort the famous Russian engineer
Alexeev did not succeed in providing longitudinal
stability for his prospective ‘‘flying wing’’ config-
uration. So far, only the airplane (wing-tail)
configuration of the ‘‘Caspian Sea Monster’’-type
vehicles and the Lippisch inverse delta wing with
negative dihedral and a tail have shown reliable
levels of stability over a sufficiently wide range of
pitch angles and ground clearances.

Research on WIG vehicles revealed significant
peculiarities of their stability criteria as compared to
aircraft, which normally operates out of GE, see
[43,48,87].

Whereas the static stability of an airplane of any
aerodynamic configuration in normal flying mode
can be provided by an appropriate selection of the
longitudinal position of the CG, the stability of a
WIG vehicle can be provided only through appro-
priate design of the aerodynamic configuration.

Strong coupling between the aerodynamic con-
figuration of WIG effect vehicles on one hand and
flight stability and dynamics, on the other hand, was
found as a typical and difficult problem of their
design.

Before embarking upon a short survey of research
work done in the field of static and dynamic
stability of WIG vehicles, it is worthwhile to dwell
upon peculiarities of their static stability using
simple physical reasoning.

Let us start with a somewhat simpler case of an
airplane in flight out of GE, and assume that the
nose up aerodynamic moment around the CG is
positive and the nose down moment is negative.
Suppose that the airplane, flying in the state of
equilibrium, suddenly encounters an upward gust
resulting in increase of the angle of attack. To assess
static stability in this case one would have to check
what would be the response of the craft in terms of
the aerodynamic pitching moment. If the system
responds with a nose down pitching moment,
restoring the state of equilibrium, the airplane
would be classified as statically stable. If, on the
other hand, the resulting pitching moment tends to
further deflect the airplane upwards, thereby in-
creasing the angle of attack still more, the craft’s
behavior would correspond to an unstable equili-
brium point. This simple analysis leads to an
important conclusion:

To have static longitudinal stability the aircraft
should respond by a negative increment of the
pitching moment to a positive increment of the
angle of attack and vice versa.

Because augmentation of the angle of attack
normally brings about augmentation of lift, the
latter conclusion can be formulated alternatively as:

To have static longitudinal stability the aircraft
should respond by a negative increment of the
pitching moment to a positive increment of the
lift.

In other words, for a statically stable airplane, the
pitching moment curves versus angle of attack or
versus lift should have negative slopes at the point
of equilibrium. Because the airplane rotates around
its CG, the above considerations imply that for a
stable aircraft the aerodynamic center3 must lie aft
of the CG.

When a lifting craft operates near the underlying
surface, both its pitching moment and lift depend
not only on the vehicle’s angular orientation with
respect to that surface (pitch angle), but also on its
distance from the surface (ground clearance). In this
case, the increment of lift induced by a perturbation
may be caused by the resulting variation of both
pitch and ground clearance.

Using quasi-steady aerodynamic derivatives, Ku-
mar [88] derived equations of longitudinal and
lateral motion of a WIG vehicle, linearized around
the design angle of pitch and ground clearance. He
reduced these equations in the frequency domain to
a characteristic quintic equation for a general case of
perturbed forward speed of the vehicle. He con-
sidered particular cases corresponding to a concept
of stability under constraints, which implies that
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Fig. 52. For static stability of longitudinal motion, the center in

height should be located upstream of the center in pitch.
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controls are deliberately operated in such a way as
to keep a chosen element of disturbance at a
constant value. Kumar applied his analysis to
predict stability of a monoplane wing with endplates
and a tandem of two wings of equal aspect ratio and
planform area,4 both wings having the Clark-Y foil
section. Both configurations were found to be
unstable in GE. Kumar commented that one of
the approaches to secure pitch stability of a WIG
consists in appropriate design of foil sections.

In 1970 Irodov published his work [43] on
longitudinal stability of ekranoplans. In a fashion
applied in dynamics of airplanes, he assumed that
perturbed motion takes place at constant speed, and
reduced the corresponding characteristic equation
to a quartic. Irodov formulated the criterion of
longitudinal static stability as the requirement that
the center in height should be located upstream of the

center in pitch, Fig. 52.
Introducing abscissas of these centers corre-

spondingly as

xh ¼ mh
z

.
Ch

y; and xy ¼ my
z

.
Cy

y,

where h is the ground clearance related to the chord,
y is pitch angle in radians and the axis x is directed
upstream, one can write Irodov’s criterion

xh � xy40.

Having obtained a simple formula for re-calcula-
tion of the above centers from one reference point
(position xcg of the CG) to another, Irodov showed
that displacement of the CG in the upstream
direction entails shifting of the center in pitch
towards the center in height, resulting in decrease of
static stability margin. It also follows from Irodov’s
work that

If the analysis referred to the trailing edge shows
that the vehicle is stable, it should remain stable
for any position of the center of gravity upstream
of the trailing edge.

Staufenbiel and his colleagues considered some-
what more general approach, accounting for per-
turbation of forward speed [87,89–94]. As in [88],
Kumar reduced the consideration of stability to the
quintic characteristic equation. To evaluate long-
itudinal static stability Staufenbiel introduced the
static height stability parameter which he defined as
the derivative of lift coefficient Cy with respect to
4In the latter case the forward wing had endplates, so that the

wing elements of the tandem were not identical.
ground clearance for a fixed (zero) magnitude of
longitudinal moment coefficient mz.

His criterion of static stability is expressed as

dCy

dh
¼

qCy

qh
�

qCy

qy
�
qmz

qh

�
qmz

qy
o0.

Essentially, the latter inequality shows that the
stabilizing effect of qCy

�
qh should exceed the

destabilizing influence of the nose-down moment.
Note that Zhukov [95] also used the derivative of lift
coefficient with respect to height (for zero magni-
tude of the moment coefficient) and the term force

stability criterion and pointed out that this factor
determines to a considerable extent the controll-
ability of the vehicle and its response to the action
of wind. Accounting for the fact that for a properly
designed WIG effect vehicle qCy

�
qh should be

negative, one can re-write the previous inequality
alternatively as

1�
qCy

qy
�
qmz

qh

�
qmz

qy
�
qCy

qh
¼ 1�

xh

xy 40,

Fm ¼
xh

xy o1.

This equation constitutes another form of Stau-
fenbiel’s static stability criterion which is seen to be
identical to that derived earlier by Irodov in [43].
Staufenbiel and Yeh [89] also analyzed the stability
of the Lippisch craft X-113 and found that in all
modes of flight with relative clearance under 0.5 the
vehicle was dynamically stable. Recently, Taylor
[96] has carried out an elegant experimental
verification of the stability of a schematized Lippisch

configuration.
Based on previous evidence, see Kumar [88], that

a single wing with a conventional Clark-Y-type foil
sections is unstable, Staufenbiel and Kleineidam [92]
and Kleineidam [97] provided an interesting analy-
sis of the longitudinal stability of a single wing
geometry.
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Fig. 53. Influence of the upward deflected flap on static stability

(from Staufenbiel and Kleneidam).

Fig. 54. Comparative static stability for three foils.
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Stating that Clark-Y ‘‘...can hardly be claimed as

an airfoil very suitable to application in WIG vehicles

due to lack of height stability...’’, the authors
conducted an analysis of the effect of foil section
geometry upon static stability and concluded that
‘‘unloading the rear part of the lower surface, which
increases with ground proximity would be favorable
for height stability’’.

It was shown that a simple way of augmenting
stability of the Clark-Y foil consists in providing this
foil with a trailing edge flap, deflected to an upward
position, Fig. 53. Furthermore, the authors found
that if unloading of the rear part of the foil is
combined with de-cambering of the foil the stability
range can be enhanced quite noticeably. It was found
that the foil class providing the aforementioned
synthesis should have an S-shaped mean line. It is
worthwhile mentioning that S-shaping of the foil’s
mean line as the method of improving longitudinal
stability of airplanes has been known for years.

Back in the 30s, a Russian engineer Cheranovsky
built an experimental airplane with S-shaped foil
sections. This airplane showed better stability
though worse aerodynamic characteristics. In their
stability prediction for an S-shaped foil, Staufenbiel
and Kleineidam used an approximation of the foil’s
mean line with a cubic spline function the para-
meters of which were selected in such a way as to
provide the maximum range of lift coefficient in
which the foil was stable. The resulting static
stability characteristics of the Clark-Y foil, the same
foil with upward deflected flap and the aforemen-
tioned optimized foil are presented in Fig. 54.

Figs. 55 and 56 show the pressure distributions
for a foil with straight lower side and a foil with
optimal S-shaping.

Upon extension of their stability analysis to 3-D
wings in ground proximity, the authors concluded
that the way of shaping the airfoil for better height
stability has the same effect for a rectangular wing
with a modified airfoil section. Other practical
results of [92] concern the influence of the geometry
of wing tips upon longitudinal static stability,
Fig. 57. Calculations showed that both use of
endplates and sweeping of the wing’s tip sections
produces improved longitudinal static stability.

An experimental investigation of the influence of
the form of the airfoil upon its static stability was
carried out by Gadetski [98]. Based on results of his
research the author indicated that it is possible to
control the location of aerodynamic centers by
means of proper design of the foil. He showed
experimentally that an upward deflection of the rear
part of the foil near the ground serves to move the
center in height upstream and the center of pitch
downstream. Arkhangelski and Konovalov [99]
performed a similar investigation by the method of
numerical conformal mapping and an experimental
technique of fixed ground board. Treshkov and
Plissov [100] studied the static stability of a lifting
system comprising two wings of finite aspect ratio.
Kornev [101] considered a class of foils with
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Fig. 55. Pressure distribution on Clark-Y foil with strait lower

side.

Fig. 56. Pressure distributions for a foil with optimal S-shaping.

Fig. 57. Influence of the geometry of wing tips upon its stability

in ground effect (a) wing with endplates, (b) wing with swept tips.
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S-shaped camber line using the discrete vortex
method which was validated experimentally by Shin
et al. [102]. Paper [102] also presented some
numerical data on the influence of position and
planform geometry of side wings upon static stability
of a composite wing configuration, the main wing of
rectangular planform being equipped with endplates.

Rozhdestvensky [103] applied mathematics of

EGE to investigate the influence of the form of the
cross-section of the wing and endplates in the case
when a wing system advances in very close
proximity to the underlying surface. This study
employs the fact that close to the ground stability
characteristics of the foil and finite wing are mostly
determined by variation of the pressure distribution
on the lower side.

Note that, Staufenbiel and Kleineidam also
indicated:

ythe ground effect mainly influences the pres-
sure distribution on the lower side of the foil.
Therefore, the derivative of the c.p. position
might be influenced by choosing a suitable shape
of the lower surfacey

It follows from both theoretical and test data
relevant to the development of WIG effect vehicles,
that at present there exist several optional types of
aerodynamic configurations which can ensure static
stability over a certain range of pitch angle and
ground clearance.

Use of a large and highly mounted horizontal
stabilizer, serving to shift the center in pitch
rearwards and only slightly affecting the position
of the center in height, enables one to ensure static
stability over a wide range of pitch angle and
ground clearance, including regimes of maximum
lift-to-drag ratio.



ARTICLE IN PRESS
K.V. Rozhdestvensky / Progress in Aerospace Sciences 42 (2006) 211–283246
The designers of the large Russian ekranoplans
opted for placing the rear stabilizing surface
behind the main wing and out of the influence
of GE. Lippisch-type configurations also employ
high-mounted tails for better stability which is
further enhanced by the special design of the main
wing which has a reverse delta planform with an
inverted dihedral. However, Onspaugh [104] em-
phasized the negative side of the above option that a
horizontal tail of sufficient size provides height
stability but leads to a remarkable increase in
structural weight. The ARPA ‘‘Wingship Investiga-
tion Final Report’’ [8] states that an increase of
the size of a horizontal stabilizer over con-
ventional aircraft for the same moment arm with
conventional wing planforms will range between
20% and 80%, depending on wing aspect ratio and
allowable fuselage pitch angles for takeoff and
landing.

Another option is the use of a tandem wing
configuration. When developing his 3 ton SM-1
prototype, Rostislav Alexeev borrowed a tandem
configuration from his designs of hydrofoil ships
[13]. Günter Jörg applied a tandem configuration in
the design of his ‘‘Aerofoil-Flairboats’’ [105]. As
referred to earlier, in a particular case of a tandem
with wing elements, which were identical except
for the endplates on the forward one, Kumar found
that tandem configuration was unstable. However,
both Alexeev’s and Jörg’s WIG effect craft
developments represent ‘‘live’’ evidence that with
an appropriate aerodynamic layout this configura-
tion can achieve stable flight. The range of angles
of pitch and ground clearance, for which a tandem
configuration ensures stable flight, is somew
hat restricted. In particular, as follows from testing
experience for the SM-1 prototype, this scheme
does not provide stability and safety when the
vehicle flies farther from the ground, see Sokolov
[106].

A suitable combination of airfoil sections, wing
planform, endplates, side wings or winglets can lead
to satisfactory height stability with tail of reduced
size or even without a tail. For example, incorpora-
tion of S-shaped wing sections into design of
ekranoplan MPE enabled to reduce the reference
area of horizontal stabilizer to 27% of that of the
main wing [13].

As future WIG effect craft are designed to fly at
small relative distances from the ground, a reference
to the paper [107] may be of interest which discusses
the asymptotic form of the equation of longitudinal
motion in EGE. It is shown that in close proximity
to the ground the parameters of stability and
motion of the lifting system depend on the ratios
of design pitch angle and curvature of the lower side
of the wing to the relative ground clearance h as well
as on a ‘‘reduced’’ density of the vehicle m̄ ¼ mh,
where the density m is defined as m ¼ 2M=rSC0.

It was also shown that at distances of the order of
the chord from the moment of perturbation, the
equations of motion correspond to the ‘‘quartic’’
formulation of Irodov, i.e. the speed of the vehicle
remains almost constant. At larger distances of the
order of chord/h and chord/h2 from the moment of
perturbation one can observe a variation of speed
which is first driven by height and pitch perturba-
tions and later is determined by the speed perturba-
tions proper. The latter conclusion confirms results,
derived by Zhukov [108]. In fact, these results justify
Irodov’s criterion of longitudinal static stability
based on the characteristic equations of the fourth
order.

9. Takeoff of WIG effect vehicles

The large power required for takeoff is the most
important impediment to the development of the
technology. Usually the vehicle has to carry about
2–3 times more power than needed in cruise, as
shown in Fig. 58.

One of the major issues in solving the problem of
efficient takeoff and landing is maximization of the
lift coefficient in alighting modes.

9.1. Lift coefficient at takeoff

The theory of EGE predicts the following upper
bound of the lift coefficient for the case of a foil with
flat lower and parabolic upper side:

max Cy ¼ 1þ
2y
p

ln
p
y
þ

8dt

p
,

where y and dt are pitch angle (in radians)
and relative thickness. Evidently in this equation
the first term, equal to unity, represents the
maximum contribution to the lift one can expect
from the lower surface of the wing (w/o PAR).
Calculations based on this equation show that the
estimate made by Reeves of a maximum lift
coefficient obtainable for a WIG effect as Cy max �

1:6 is quite reasonable. Rozhdestvensky [1] derived
an approximate formula for the ratio of the
maximum lift coefficient with power augmentation
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Fig. 58. Characteristic drag curve of ekranoplan of the first

generation (I—floating, II—planing, III—flaring in ground

effect, IV—intermediate regimes) [57].

Fig. 59. Magnitudes of cruise (black squares) and takeoff (empty

squares) lift coefficients for wing-in-ground effect vehicles.
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to that without PAR:

CPAR
yto

Cyto

�
1

1� k2
j TS=2w

,

where kj is the coefficient of decay of the velocity in
the system of turbulent jets during their evolution
from the exit of PAR engines to the entrance cross-
section of the channel under the wing. The
parameter TS ¼ T=Sj (where T is installed thrust,
Sj is overall nozzle area of the PAR power plant)
can be called specific installed thrust. The parameter
w ¼M=S represents the wing loading. One can
conclude from this equation that PAR serves to
decrease the speed of detachment from the water. It
can also be seen that the takeoff efficiency of PAR
depends on the reciprocal location of the wing and
the PAR engines, the magnitude of specific installed
thrust and the wing loading. Fig. 59 presents values
of cruise and takeoff lift coefficients for existing and
proposed WIG effect vehicles. It can be observed
from the figure that in the case of power-augmented
takeoff the values of the lift coefficients are larger
than those without PAR-aided takeoff.

9.2. Liftoff devices and solutions

The large power required for takeoff is one of the
most important impediments to the WIG effect
technology, see [8]. A list of possible solutions may
include
�
 Direct underside pressurization (DUP)
Applying pressure to the vehicle’s underside
results in a mode of operation during takeoff that
is similar to a surface effect ship. In 1935 Kaario
(Finland) applied DUP and built a ram-wing snow
sled. In the 50s and 60s Bertelson developed
dynamic air-cushion GE machines (GEMs). The
DARPA report mentions a patent (T.W. Tanfield)
for a ‘‘Near Surface Vehicle’’ which is essentially a
small WIG initially using a diverted thrust air
cushion to attain lift. At higher speeds the lift is
provided by airfoils. A simplified ‘‘air cushion’’
takeoff aid was recently developed by Design
Unlimited. It makes use of what the authors call a
‘‘streamlined low-pressure cavity’’. The tests con-
ducted for different wing configurations (tandem,
canard, reverse delta wing, rectangular, double
delta) increased the acceleration rate by more than
80% and cut the takeoff distance in half.

As indicated by Fischer, the Lippisch craft X-113
was tested with an air-cushion landing device [109].
An inflatable rubber body, comparable to a hover-
craft, was mounted around the fuselage of the
X-113. This rubber body was kept by suction to the
airframe to avoid additional aerodynamic drag
during cruise. The oval shaped air cushion below
the fuselage was filled with a separate blower of
variable pressure in order to create a high-pressure
air cushion as on a hovercraft. Towing tank tests
showed significant reduction of drag, especially in
the lower speed range. However, the imperfect hull
shape increased the drag in waves. Thus, reduction
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Fig. 60. Installed thrust-to-weight ratio of wing-in-ground effect

vehicles (circles) and jet aircraft (triangles).
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of takeoff power was achieved only on calm water.
On the other hand, the design enabled amphibious
operation of the vehicle.

The DUP approach is used in the ‘‘Sever’’ air-
cushion craft [110], Fig. 60. These high-speed
amphibious boats use the following concept. Under
a certain (critical) speed they are supported by a
static air cushion. The skirt is designed in such a
way that when the critical speed is exceeded the
oncoming flow is let into the chamber so that at a
normal cruising speed the vehicle is supported
partly by the static air cushion and partly by the
dynamic head due to forward speed. In other words,
the skirt of the ‘‘Sever’’ craft has an ability to fold
when the dynamic pressure head of the oncoming
flow exceeds the static pressure in the air cushion, so
that at high speeds the boat switches to the GE
mode. The skirt has fore, aft and side components.
The side skirt comprises inflated cylinders stream-
lined at both extremities. The fore and aft skirts,
made of rubberized fabric, are attached, on one end,
underneath the platform between the cylinders.

On the other end, the skirts are connected to the
cables coming from the winch. The special features
of these skirts are that
�
 they are collapsing and there is only a small drag
penalty in negotiating obstacles,

�
 they are easily retractable in flight, significantly

decreasing drag and allowing greater flexibility in
selecting length/width platform dimensions.

The designers of ‘‘Sever’’ claim that this principle
allows to configure an ekranoplan with any load
lifting capacity. The use of collapsible flexible fore/
aft skirts and pneumatic cylinders enables ekrano-
plans to takeoff from and land on any surface thus
conferring enhanced amphibious capabilities.

It is worthwhile mentioning that at the end of the
80s Cheremukhin (Russia) had built a one-seat
aircraft ‘‘Poisk’’ employing this type of air-cushion
device for takeoff and landing [111] (Fig. 61).

Fischer used the idea of the diverted thrust air
cushion in his Hoverwing technology [112], Fig. 62. It
turned out that in transition between displacement
mode and approximately 90% of the takeoff speed
the air cushion is able to lift up to 80% of the
vehicle’s takeoff weight. At the same time, only 7% of
the propeller disc area is diverted from the propeller
main slipstream and guided through the air tunnel
below the hull. When reaching the takeoff speed the
dynamic pressure head replaces the static air cushion.
The sealing finger skirts are then automatically
deflected to the underside of the hull. The inlet port
behind the propeller is closed. The latter action
produces two effects: (1) it deflates the bag-type skirt
sealing at the end of the air cushion which is folded to
the vehicle’s lower side by the free air stream, (2) full
thrust is made available for cruising. Thus, after
reaching the takeoff speed, the craft operates in GE
mode. Unconditional inherent longitudinal stability
of the vehicle during transition to takeoff can be
maintained by adjusting the rear sealing of the static
air cushion and the forward sweep of the outer wings.
Before landing the inlet port is opened again, the rear
sealing inflates immediately after throttling up when
reaching the water surface. Building up of the air
cushion makes the front finger skirt sealing swing
down automatically. As a result, the air cushion is
working again after touchdown, which is reported to
make the landing ‘‘extremely soft and reduces the
structural loads’’.

Another way of pressurizing the vehicle’s under-
side is connected with the blowing of the engine
exhaust under the main wing and is known as power
augmentation (PAR).
�
 Hydrodynamic drag reduction
The primary hydrodynamic forces during the
takeoff are hull drag, drag of the wing, its flaps
and endplates. So, any method of hydrodynamic
drag reduction can be employed to decrease the
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Fig. 61. The DUP vehicle ‘‘Sever’’.

Fig. 62. Scheme of diverted thrust air cushion of ‘‘Hoverwing’’.

K.V. Rozhdestvensky / Progress in Aerospace Sciences 42 (2006) 211–283 249
power required to takeoff. Some potential might
exist for the use of polymer solutions injected
into the boundary layers of those surfaces of the
wing-in GE vehicles which are in contact with
water during the period of takeoff. Note that one
of the major obstacles to implementation of the
well known phenomenon (Toma effect) of
viscous drag reduction through use of injection
of polymer solutions on displacement ships are
due to the necessity to store on board large
quantities of polymer. For the WIG effect vehicle
this difficulty is not insurmountable because
during the takeoff the vehicle is in contact with
water for only a few minutes.

�
 Aerodynamic high-lift devices

In the DARPA Wingship report [8], various high
lift methods are discussed, such as augmentation
of camber, use of conventional and jet flaps, slots
and different trailing edge devices. It should be
noted, however, that not all devices beneficial for
aircraft are as efficient onWIG effect vehicles. For
example, in contrast to airplanes, trailing edge
flaps do not create a considerable increase of lift
in GE, the attainable lift coefficient being
approximately near unity. These lift coefficients
result in either high takeoff speed or huge wing
areas. The effect of the flap may also result in
a decrease of the longitudinal stability. The latter
is regarded as absolutely essential for safe
operation.

�
 Hydrodynamic high-lift devices (hydrofoils)

Hydrofoils and hydroskis reduce the overall
hydrodynamic drag by reducing the area in
contact with water. According to DARPA ,the
investigation shows that reasonably sized retract-
able foils can potentially lift a large wingship hull
out of the water at speeds as low as 25–35 knots
and reduce the hydrodynamic drag during take-
off for the 400 ton size vehicle [8]. Hydrofoils and
hydroskis can be used to absorb landing loads,
reducing peak loads on the hull structure,
Fig. 63. On large Russian ekranoplans the
hydroskis are employed in the vehicle’s landing
phase. The challenges of this concept are cavita-
tion problems, drag caused by suspension sys-
tems, overall structural integrity and weight
penalties from hydroskis or/and hydrofoil-re-
lated mechanisms.
Lippisch is known to have conducted full scale
trials with use of retractable hydrofoils as takeoff
aid. Two front mounted and one stern mounted
hydrofoils were used on the X-114. Advantages
were: reduction of the wetted surface, reduction of
the outer float size of the catamaran configuration
followed by a significant weight decrease of the
vehicle as well as decrease of the tail size as the
destabilizing influence of the floats diminished.

�
 Vehicle footprint (cushion area) variation [8]

It may be possible to design a variable cushion
area and variable length-to-beam ratios. This
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Fig. 63. Scheme of amortizing hydro-ski device of ekranoplan.
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could result in significant drag reduction at high
speeds. In fact, vehicles with low length-to-beam
ratios have higher hump speed and a very high
(wave) drag at this speed. On the other hand,
craft with high length-to-beam ratios have a
higher hump speed and low drag at speeds
around the hump speeds. The concept is to
operate at high length-to-beam ratios at low
speeds and low length to beam ratios at high
speeds.

�
 Leading and trailing edge (Fowler) flaps to

increase wing area [8]
This potential solution increases the wing area
which for the constant lift coefficient would
reduce the takeoff speed and, consequently,
potentially reduce loads on the vehicle structure
due to wave impacts, thus reducing the empty
weight fraction. Another benefit of increasing the
wing by the use of the forward and rear (Fowler)
flaps is that it increases the length-to-beam ratio
of the pressure patch entailing augmentation of
the hump drag speed.
The benefit of increasing the latter is that the
peak drag forces at high hump velocities are less
than the peak drag forces at lower hump
velocities. A problem with this approach is that
it does require additional vehicle complexity and
may increase the weight.

�
 Peripheral jets in endplates floats [8]

Peripheral jets in the wing’s endplates may
improve PAR efficiency by sealing the pressure
under the wing and may augment the vehicle’s
thrust. Peripheral jets were used extensively on
the hovercraft in the ‘‘early days’’ as means of
providing the air cushion beneath the craft. The
jet also provided the air curtain with a blowing
angle optimized for cushion pressure and cushion
area.

�
 Rechargeable stored energy burst thrust [8]
Some ideas and concepts are known regarding
momentary thrust augmentation during takeoff.
One approach is to develop engines with thrust
augmentation capability. Other approaches in-
clude using rockets to assist takeoff by providing
a system where excess energy during one phase of
operation is converted to stored energy for use
during takeoff. There are some impediments to
implementation of these ideas, e.g. the rocket
concept reduces the vehicle’s flexibility because it
can only takeoff from sites where the rockets can
be reloaded.

9.3. Power augmentation for takeoff and cruising

9.3.1. PAR

The specific technique of aiding takeoff and,
perhaps, landing by directing the efflux of forward
mounted propulsion units under the wing is called
air injection in Russia and power augmentation (the
abbreviation PAR stands for power augmented
ram) in the Western countries, Figs. 64 and 65.

PAR has been shown to reduce the power for
takeoff and the impacts of the oncoming waves in
alighting modes. Suggestions to use blowing under
the main wing date back to the Warner ‘‘compressor
plane’’, Bartini and Alexeev. The latter two
engineers managed to implement this technique,
correspondingly, for the seaplane VVA-14 making
use power augmented takeoff and landing and the
large ekranoplans of the first generation (KM and
its derivatives).

In 1962 Alexeev was the first to apply the
underwing blowing to improve the takeoff and
landing characteristics of the SM-2 model [12].

The blowing system, however, aggravated the
pitch stability problem for the tandem configura-
tion. Lippisch used PAR in 1963 on his X-112 craft
and was able to increase the lift coefficient of the
Clark-Y airfoil section by 25% as compared to that
w/o PAR. Half of the propeller area blew air under
the wings and could be controlled by smaller flaps
behind the propeller. Fischer tested PAR on his
Airfish AF-3 PA version by installing two tiltable
propeller units of 20 hp each at the bow of the
vehicle. Thereby the takeoff weight could be raised
from 750–900 kg, and the takeoff distance, espe-
cially under waves, could be shortened significantly.

Another design concept is a vehicle that cruises on
PAR (Volga-2, Amphistar-Aquaglide, Swan-I and
II). As a result, the maximum takeoff drag-to-lift
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Fig. 64. Scheme of generation of lift force in PAR mode.

Fig. 65. Schemes of power augmentation for airplane and

composite wing configurations.
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ratio for the ekranoplans in smooth water of
0.17–0.2 was achieved, almost 2 times less than that
for the conventional seaplanes. In PAR mode, used
either for takeoff or as a permanent feature, a
superposition of the dynamic air cushion due to
forward speed and the power augmented air cushion
occurs, accompanied by interaction of the propul-
sor-generated turbulent jets with the main lifting
surface. The efficiency of PAR in reducing the
takeoff speed depends on the reciprocal arrangement
of the main wing and PAR engines, the wing loading
and the ratio of the installed thrust to weight [3].
Based on the Russian data, the rough water drag for
ekranoplan with PAR is 24% larger than that for the
calm water. The rough water drag for a WIG effect
vehicle w/o PAR is 42% larger than the calm water
drag. A WIG craft with PAR has the lowest amount
of drag for either case. Generation of power
augmented lift is usually accompanied by decrease
of the thrust recovery fraction (TRF), resulting in
longer takeoff runways. The TRF shows how much
of the PAR engine thrust can be recovered for
acceleration of the vehicle. The rational combination
of PAR efficiency (expressed as a weight to thrust
ratio) and TRF can be identified with help of the so-
called PAR efficiency envelopes introduced by
Gallington et al. [84] on the basis of the potential
flow theory and jet-momentum theorem. In this
analysis a ‘‘re-entrant jet (RJ)’’ model of interaction
of turbulent jets with the leading edge of the main
wing was used. The RJ scheme implied separation of
the PAR engines exhaust jets from the leading edge.
To evaluate the increase of efficiency due to the
tendency of the jet to envelop the rounded leading
edge, a corresponding approximate ‘‘Coanda effect’’
model was proposed in [3].

During the takeoff large water sprays are formed
which, under certain conditions, can spread all over
the craft’s structure including the bow section. As
indicated by Kirillovikh [11], when the takeoff
technique is not properly defined—a ‘‘pumping’’
of the engines and, consequently, their ‘‘shut-down’’
can occur due to a failure in the combustion
chamber and/or water penetration into the engines’’
venting parts.

Optimal longitudinal position of the engine’s
nozzles with respect to the craft depends on the
specific engines and on the specific design of the
ekranoplan. Both theoretical solutions and experi-
mental data suggest that a specific ratio of the jet
area to the inlet area of the channel under the wing
(at its entrance) is required for the optimal
performance at each trailing edge gap setting. This
optimum jet area is usually larger than the exit area
of the conventional propulsors. Fortunately, en-
trainment causes the jet area to increase in the
downstream direction. Therefore, for the propulsor
whose area is less than optimal the maximum
performance occurs with the engines well upstream
of the wing. Gallington defined three possible cases
[84]. The channel may be (1) underfilled, where a
region of stagnated air forms near the surface; (2)
filled where the exhaust completely fills the channel
opening or (3) overfilled where some of the flow
spills over the top of the main wing.

9.3.2. USB PARWIG concept

The USB PARWIG concept (Murao [113]) is a
craft which employs the front wing with upper
surface blowing and the rear WIG effect in a
tandem arrangement. The comparison of the USB
PAR with a tilted-propeller PAR in terms of lift
shows (as stated by the authors) that remarkable
gains can be obtained by the former, Fig. 66.

The WIG scheme with PDS PAR comprising a
PDS (propeller deflected slipstream) fore wing and
GE rear wing in a tandem configuration was
proposed by Professor Murao [114]. This study
compares wind-tunnel performance of PDS PAR
with a conventional PAR-WIG with tilted propeller
and finds a reduction of both required thrust and
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Fig. 66. Wind tunnel model of PDS PAR-WIG investigated by

Murao.

5Hooker defines empty weight as the ratio of the operational

empty weight (OEW includes engines and all controls and

equipment necessary for standard operation) to the takeoff

weight.
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speed by 30% in the former case. Radio-controlled
models also showed that the takeoff length of the
proposed WIG scheme was shorter than that of
conventional seaplanes.

The authors state that the failure to reach the
commercial market for WIG craft is associated with
inefficient takeoff devices and poor seaworthiness.
They underline that the PAR effect is remarkable,
but the lift of the thruster proper does not
contribute much. Hence the proposed concepts of
USB PARWIG and PDS PAR-WIG. The latter is
similar to the former and includes a fore-wing with
full span flap and propeller system. To compare
with PAR-WIG the rear wing and its incidence were
taken similar in the case of PDS PAR-WIG.
Through increase of the thrust they attained zero
longitudinal force which corresponds to the self-
propelling condition. This condition was reached at
smaller thrust coefficients for the tilted propeller
case, which due to the drag of the tilted propeller
was smaller than that of the PDS.

The lift coefficient of the tilted propeller WIG was
less than that of the PDS PAR-WIG. A 201 flap
deflection was found appropriate. The authors
found that the PDS PAR-WIG model has a
tendency toward what they call ‘‘jumping takeoff’’.

10. Structural design, weights and materials

WIG effect vehicles present unique technology
problems in structural design because they operate
in air and water. Structures must be designed for
both aerodynamic and hydrodynamic loads in
highly corrosive conditions. In other words, the
structure must be strong enough to hit the water,
but light enough and configured to fly efficiently.
These factors create stringent requirements for
design. An example of design dilemma for a
wingship structure is that large size and load factor
would suggest use of lighter composite materials,
but some composite materials are poor energy
absorbers and would not tolerate the water slam-
ming loads absorbed by a vehicle.

Structural issues become more difficult as the
structure increases in size. For example, using given
materials and structural design one cannot just
simply go on making conventional airplanes larger
and heavier. For a given material, concept and
technology, the empty weight fraction5 would grow,
leaving an unacceptably low payload fraction.

One may speak of a curse of the square-cube law.
The latter reads: The stress in similar structures

increases as the linear dimensions if the imposed load

is proportional to the structual weight, since the latter

grows as the cube of linear dimension and the material

cross-section carrying the load grows only as the

square.
Some experts assume that going for larger and

larger vehicles the curse of the square-cube law can
be overcome through use of new (e.g. all wing)
aerodynamic configurations as well as by changing
the structural concept and materials.

Hooker’s studies indicated an empty weight as
low as 20% for a 500 ton ekranoplan. He states
that Russia built ekranoplans with very large
empty weight fractions ranging between 60
and 75%, but they were intended to sea-sit, were
built at that time by ship designers and builders, and
were the first ever built. Hooker predicts for his
5000 ton wingship empty weight fractions of 35%
and 40%. He claims that using all carbon, structural
weights approaching 12% are possible for the
wingship. As a point of reference the supersonic
B-58 bomber (designed to high dynamic loadings)
was a stainless steel airplane employing braised
honeycomb panels and had a 14% structural weight
fraction.

The design of a wingship structure requires
merging of two technologies: aircraft design and
high-speed ship design. Both technologies have one
criterion in common: that is to design a very weight
efficient structure with high resilience and good
producibility. High loads of the takeoff and landing
conditions require substantial scantlings. This
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makes it feasible to use welded joining methods due
to the plate thicknesses required for the fuselage and
wing skin plating, thus maintaining the required
buckling strength. This approach reduces the weight
penalties for lower strength aluminum alloys. About
60% of the Orlyonok structure and about 90% of
the Loon structure were welded. Another reason for
using welded joining methods was the difficulty of
maintaining water tightness of riveted or bolted
connections in the waterborne conditions. In
addition, the fabricating costs are substantially
reduced.

The gliders of large Russian ekranoplans were
made of appropriate aluminum alloys which had to
comply with the following requirements
�
 high strength combined with sufficient viscosity
of destruction,

�
 high magnitude of specific strength,

�
 capacity to withstand variable loads,

�
 high corrosion resistance,

�
 weldability.

Needless to underline that the last two properties
are of utmost importance in shipbuilding. For
example, the glider of the search-and-rescue ekrano-
plan was manufactured from alloys AMg 61 (1561)
and K48. The riveted fuselage of one of Orlyonok’s
prototypes was made of a special aluminum alloy
K48-2T1, see Kravchuk et al. [115]. This alloy based
on the aluminum–zinc–magnesium and cuprum
system had been developed by shipbuilding enter-
prises. Later on AMg-61 weldable alloy was used for
‘‘Orlyonok’’ (which applies to the basic fuselage, the
wings, the endplates and the hydroski) and K48-2T1
was only used for internal riveted structures, such as
decks, transverse bulkheads and partitions. Stainless
steel is used for the engine pylons which require high
strength and heat resistance. Whilst the main hull
material for larger ekranoplans will probably remain
limited to highly tensile steel and aluminum alloys,
many other major components of these craft may
well benefit from the use of fiber-reinforced plastics.
The advantages of using composite materials in the
fast ships industry have been recognized, see Frid-
lander (1992) and Ho (1995):
�
 low weight (results in increased speed, increased
payload and reduces fuel consumption),

�
 fire resistance,

�
 high stiffness (reduces or eliminates supporting

framework),
�
 durability (excellent fatigue, impact and environ-
mental resistance, fiber-reinforced plastics are
non-corrosive),

�
 rapid fitting,

�
 improved appearance.

The smaller craft may be manufactured entirely
from composites. For example, a derivative of
the Lippisch Aerofoil Boat ‘‘Airfish’’ is molded
in two halves in plastic reinforced with carbon
fiber, see Fischer [116]. The PAR vehicle ‘‘Aqua-
glide’’ (D. Synitsin) was manufactured with exten-
sive use of fiber-reinforced plastics in the ratio:
40–45% glue matrix and 55–60% fiberglass fabric.
The hull of the Aquaglide consists of the two halves:
starboard and port, both of them manufactured as
entire parts. The external skin-plating of the
bottom, sides, awning and the hatch covers of the
bow part of the craft were manufactured from a
three layer composite material employing the glass-
fiber. The filling of the hull is made with a foam
plastic [12]. The force elements of the hull (in
particular, the 3rd and the 4th frame spacing, the
foundation for the main engine, the longitudinal
girders of the bottom) are manufactured from
aluminum magnesium alloy. The joining of the
metallic details is made by welding, riveting and
threaded joints.

The main structures of the ekranoplan are
manufactured of corrosion-resistant materials and
alloys: glass-fiber plastic, foam plastic, foam poly-
urethane, aluminum-magnesium alloys, stainless
steel. When joining the chemically active pairs of
metals, these are isolated from one another by
means of glue and constructive clearances. Compo-
site sandwich structures, as used on high-perfor-
mance racing boats and on light aircraft can be
tailored to local loads and can be manufactured at
low cost. Using a combination of carbon fiber and
glass fiber with thermoplastic matrix can result in a
structural weight savings of 15–25% compared to
aircraft aluminum.

11. Control systems [12,117]

The goal of the control system is to:
�
 transfer the control signals from the crew to the
control organs,

�
 transfer the control signals from executive

mechanisms of the automatic control system to
the control organs,
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�
 provide the necessary power for the deflection of
the control organs,

�
 ensure and improve stability of the motion of the

ekranoplan,

�
 provide the required steering characteristics of

the ekranoplan,

�
 generate control signals for an automatic trajec-

tory control of the ekranoplan,

�
 generate signals for the directional gauges for the

regimes of semiautomatic piloting of the ekrano-
plan,

�
 enhance safety of motion of the ekranoplan by

means of signaling and restricting the deflections
of the control organs when approaching the
limiting acceptable magnitudes of the motion
parameters.

The main control systems for the ekranoplans are
those of control of: height rudder, course rudder,
flaps and tilting nozzles. Quite an effort is needed to
activate some of the control elements of the
ekranoplan. For example, a actuator of the flap
of the Orlyonok generates a maximum effort up
to 15 ton with a speed of the outer link of
200mm/s. This means that such a drive requires
a power of the order of 40 hp. For a Loon the
hydro amplifier provides a maximum effort of
approximately 20 ton with a maximum speed of
the output link reaching 160mm/s. The latter
parameters correspond to about 42 hp. This is
relatively large compared to hydraulic actuators
used on large aircraft today. However, there are
comparable or larger activators in terms of horse-
power developed for the space shuttle launch
vehicle.

A system of automatic controls is intended for
�
 damping of the angular oscillations of the
ekranoplan in pitch, heel and yaw, as well as
damping of a linear motion in height when
applying the manual control,

�
 automatic stabilization of the magnitudes of

pitch, heel, course and ground clearance estab-
lished by the crew,

�
 correction by the crew of the established magni-

tudes of pitch and course,

�
 display on the piloting gauges indicators of the

current magnitudes of pitch, heel, course and
ground clearance,

�
 signals warning the crew that the ekranoplan has

reached the limiting acceptable magnitudes of
pitch, heel and flight height,
�
 automatic self-control of the ability to work,
indication and localization of the failures,

�
 output of the signals, proportional to the pitch,

yaws and flight height.

The damping of the angular oscillations of the
ekranoplan in pitch, heel and course as well as
displacements in height is provided by a system of
gauges of their angular velocities, amplifying
stations and rudder aggregates, which act upon
the rudder surfaces-height rudder, course rudder
and flaps (in a flap and aileron regime). The
generation of the control signals, proportional to a
vertical velocity, is effected on the basis of signals
coming from the accelerometers and height meters.

Low flight altitude and the short time period
available to solve flight safety problems in case of
different control system failures require some
specific operational safety regulations to be com-
plied with.

The probability of accidents with ekranoplans is
much less than with aircraft, since the former has an
‘‘aerodrome’’ beneath the wings. Thus, an ekranoplan
is almost always able to make an emergency landing
in case of serious control system failure. However, the
landing of the ekranoplan results in considerable loss
in economy because the landing is being followed by
the takeoff which requires maximum fuel costs under
operating conditions of the ekranoplan power plant
during the limit thrust modes.

These circumstances dictate the main regulations
for the ekranoplan’s control systems: maximum
operational safety and provision of the crew with
precise information about those failures which
require an emergency landing.

The automatic control systems of ekranoplans
(stabilization and damping systems) not only have
to provide a steady lift, as for an aircraft (and even
to a higher extent) but also have to ensure safe
takeoff and landing modes.

Taking into account the specific nature of the flight
in a strictly limited altitude range, the aerodynamic
configuration of the ekranoplan is designed to
facilitate and to minimize control actions of the crew
during all flight modes and to reduce pilot errors. In
the case of Aquaglide a special airscrew and flap
deflection control system has been developed to help
the craft accelerate to cruising speed. Basically,
proportional airscrew and flap deflection is performed
in the takeoff mode, so that trim angle remains
unchanged, i.e. with no change of the longitudinal
moment. This is achieved by the simultaneous move-
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ment of the control levers in the cockpit. It is obvious
that a decrease of airscrew and flap incidence angles
reduces the lift. Accordingly, it would be assumed
that the craft loses altitude with this change.
However, if the change is carried out during vehicle
acceleration, the loss of lift is compensated. In this
case no reduction in altitude can be expected.
However, this happens to be totally dependent on
how fast the change is performed.

It is clear that the ram-wing concept is especially
susceptible to active control, because small changes of
the flow in the vicinity of the trailing edge may bring
about a considerable change of the lifting capacity.

Real-time information is needed on the current
motion coordinates in order to provide effective
operation of the AMCS of the ekranoplan: angles of
heel and pitch, angular velocities, ground clearance,
speed of flight, vertical velocity, loads, etc. Hence
there is a need for measuring of the motion coordinates.

Flight in GE poses particular requirements for
the measurement of the coordinates. For airplane
control the angles of pitch and heel are weakly
controlled intermediate coordinates. Their real-time
measurement is employed only for maneuvering in
height and heading control. Errors in the measure-
ment of heel and pitch of the order of units of
degrees is considered as quite acceptable. The
ekranoplan can move only in a very restricted
combination of ground clearance, angles of pitch
and heel. Outside this combination there exists a
danger of contact of the extreme points of the
structure with the underlying surface. Therefore, for
the ekranoplan, in contrast to airplanes, the angles
of heel and pitch play an independent role, and
should be measured with errors not exceeding 15–20
angular minutes in all regimes of motion, including
acceleration, braking and turning, i.e. in the high-
load conditions.

The application of height meters is excluded
because of their low accuracy. Acceptable accuracy
of the order of 0.1–0.2m is ensured by measuring
devices which employ a contact (by means of
radiation) with the underlying surface. These may
be, in particular, radio height meters for small
ground clearances, as well as isotopic and optical
height meters.

However, when using the aforementioned height
meters there appear certain specific difficulties. For
example, when these devices are used over a
perturbed sea surface, there appears a wave
component in the output signal. This component
varies with the frequency of the encounter of the
craft with the wave and has an amplitude equal to
that of the wave. A control system which makes use
of such a signal, tends to make the ekranoplan
follow the variation of the sea surface, i.e. to
envelop the wave. This phenomenon would at best
induce high-frequency fluctuations of the rods of the
automatic rudder mechanisms, and, consequently,
the wearing of these mechanisms and increased
expenditure of energy. In the worst case, there may
take place a perturbation of the motion of the
ekranoplan proper, which can cause resonant
oscillations of the craft in the vertical plane. As
seen from this example, the signal variations due to
sea waves should be considered as a hindrance
which has to be alleviated.

In order to optimize the process of motion
control of the ekranoplan, it was necessary to
ensure continuous (along the whole route) measur-
ing of the wave height under the wing, because the
selection of the regime of flight of the vehicle
depends on the roughness of the sea.

Another important question concerns the display
of the flight information on the control panel. This
information should be prioritized mostly on the basis
of ensuring flight safety. The ekranoplan pilot should
focus on the gauges displaying the ground clearance,
angles of heel and pitch. When flying at small heights,
it is very important for the pilot to know the current
position of the vehicle with respect to the underlying
water surface. That is why the piloted ekranoplans
had a rear-view mirror. The KM had a special
combined indicator, a pitch indicator on the left side
and a heel indicator on the right side. In the bottom
part of the gauge there was the height indicator in the
form of a horizontal strip which moved up and down.
Such a device allows the pilot to check the gaps, i.e.
current distances of the lowest points of the
ekranoplan from the underlying surface.

In order to control the height of flight of the
ekranoplan one can use:
�
 deflection of the flaps,

�
 variation (trimming) of the pitch angle (with use

of the height rudder),

�
 variation of the speed of flight (by varying the

thrust),

�
 deflection of the flaps with simultaneous varia-

tion of the thrust.

As indicated, one can vary the height of flight of
the ekranoplan without use of the flaps, just by
means of variation of the air speed, because the lift,
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defining the craft’s vertical motion, is proportional
to the dynamic head of the air flow.

It is interesting to compare the effect of the speed
variation in GE and out of GE. In the latter case
this effect induces the motion of the craft with
constant vertical speed. Near the ground the speed
variation leads to a change in height, corresponding
to a new speed. To change the ekranoplan’s
heading, similar to the turning of the airplane, one
has to generate a side force. The latter arises due to
the heel angle, yaw angle or due to a simultaneous
development of the angle of heel and yaw (corre-
sponding to regular, planar and combined turning).

It is known that the airplane can enter a regular
power turn with angle of heel up to 50–60 deg
without change of the flight height. For the
ekranoplan the angles of heel and yaw, upon which
depend the maneuvering characteristics, are con-
siderably restricted to reduce the probability of
contact of the structure with the water surface and
to reduce the danger of such contacts. Even from
purely geometric considerations, when flying at
small height, it is necessary that the distance of
the lower tip of the endplate of the wing from the
water surface should not decrease in turning. To
provide this the craft has to, first of all, perform the
elevation of the ekranoplan in height—the so-called
jump-up or fly-up.

To perform the jump-up one has to activate the
channel of height, that is to also control the thrust.
The increment of thrust is needed not only for
passing of the vehicle to the new ground clearance
but also to exclude a loss of height in the long-
period motion due to the growth of the drag. The
latter is connected with development of heel and
yaw, as well as with inclinations of the course
rudder, ailerons and flaps. Thus, the turning of the
ekranoplan is a complicated three-dimensional
maneuver requiring for its execution the activation
of the channels of course, height, heel and speed
control. Use of the combined means of turning with
heel and yaw is stipulated by striving to enhance the
efficiency of the turning with restrictions on the
maximum values of heel and yaw, which are equally
dangerous because of a possible contact of the
structure with the underlying surface. When enter-
ing the combined turning maneuver, the value of the
required thrust increases considerably. The effective
combined turning should be applied in need of a
considerable change of the heading of the vehicle. If
the vehicle has to be turned several degrees, there is
no need to make a complex three-dimensional
maneuver with a jump-up. It is easier to execute
planar turning.

Normally, when wishing to control the ship
manually, the pilots should switch off the automatic
stabilization. Such an approach is used mostly
during the straightforward motion of the vehicle.
In the process of executing maneuvers there often
occurs an expediency and, in some cases, a necessity
of simultaneous use of the manual and automatic
control (combined control). The expediency of the
combined control arises in emergency situations. In
case of a sudden danger of collision with an obstacle
in the path of the vehicle the pilot should have a
possibility, without losing time on switching off the
stabilization, to actively interfere in the process of
steering.

One of the directions of ensuring flight safety of
the ekranoplan when steering it manually is the
development of a special ‘‘anti-accident’’ automatic
device which should switch on when reaching
dangerous values and return the ship to the domain
of safe flight regimes.
12. Economics

One of the most important goals in the develop-
ment of a transport system is its economic
efficiency. One of the measures of the economic
efficiency of a transport vehicle is the well-known
Karman–Gabrielli diagram. Akagi represented this
diagram in a reversed transport efficiency format
[118]. Rozhdestvensky supplemented Akagi’s data
on several types of displacement and high-speed
ships, airplanes, railway transport and trucks by
corresponding data on Russian and non-Russian
ekranoplans [1]. This reverse transport efficiency
diagram showed that even existing ekranoplans,
which are still far from optimum, have acceptable
magnitudes of transport efficiency in their own
speed range.

Today, the time of delivery of passengers and
cargo becomes an extremely important factor when
assessing the economic viability of means of trans-
portation. The JIT (Just In Time) mentality is an
urgent need in the present situation. The demand for
speed (the modern travelers’’ tendency) which is an
obvious advantage of the ekranoplan, as compared
to other means of water transport, is well explained
by the Bouladon chart, Fig. 67, where design speed is
plotted versus design range for ekranoplans, air-
cushion vehicles, hydrofoils and jet planes.
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Fig. 67. Bouladon-type chart, characterizing demand for speed.

Fig. 68. Total cost component, accounting for the time of the

passenger, versus design range of different vehicles, including

ekranoplans.

Fig. 69. Relative transport productivity versus mass for ekrano-

plans and other high-speed marine vehicles.
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The value of a traveler’s time has become
an important factor in present models of estimation
of the economics of transport systems. Fig. 68
shows the total cost component accounting for the
time of a passenger versus the design range of
different vehicles, including ekranoplans. One can
see that with respect to this parameter the ekrano-
plans fill in the gap between other fast ships and jet
airplanes. The data for this figure have been
calculated in a manner similar to that of Akagi
and with use of additional information on WIG
effect vehicles.

It is evident that the efficiency of a vehicle
carrying some payload increases with speed. The
faster the passengers (cargo) are delivered to a
certain destination the better. That is why another
useful measure of the economic efficiency is the so-
called transport productivity which can be defined as
the payload times the speed. Fig. 69 presents relative
transport productivity versus the mass of the
vehicle. The vertical axis represents the payload
times the Froude number, based on a characteristic
length equal to the cubic root of the volumetric
displacement of the vehicle. On this chart ekrano-
plans look more attractive than other high-speed
marine vehicles.

13. Certification of WIG effect vehicles [119–122]

13.1. Ship or airplane?

One of the crucial issues relevant to the use of a
vehicle is its certification. Conceived to operate at
the interface of water and air, a stumbling block is
the argument between shipbuilding and aviation
agencies as to the nature of the ekranoplan (WIG,
WISES, Flarecraft, etc.). Is it a ship, navigating at
aviation speeds, or an airplane choosing to fly near
the sea surface to take advantage of the GE? The
famous German engineer Hanno Fischer describes



ARTICLE IN PRESS
K.V. Rozhdestvensky / Progress in Aerospace Sciences 42 (2006) 211–283258
the distinction between a ship and an airplane from
certification point of view in a simple albeit
constructive comment: ‘‘A ship should not be allowed

to jump over the bridge, whereas the airplane is not

supposed to fly under the bridge’’, Fig. 70.
There are several reasonable arguments to sup-

port the concept of the ekranoplan being a ship, in
particular:
�
 the main operating mode is performed in
immediate vicinity of water surface,

�
 takeoff and touchdown take place from (upon)

the water surface,

�

Fig. 70. Ship or airplane?
ekranoplans can float as conventional displace-
ment ships,

�
 the ability of ekranoplans to temporarily increase

altitude of flight in order to clear obstacles can be
qualified as a short-time emergency regime.

As far as the last assertion is concerned, it should
be kept in mind that the real height of such a
‘‘dynamic jump’’ is normally much less than the
lower limit of altitudes prescribed for normal
aircraft operations by the requirements of the
ICAO.

Since 1991, many efforts were made to eventually
make WIG effect vehicles a legitimate type of
transportation. Although progress was quite slow,
some practical solutions emerged in the absence of
formal international regulatory recognition.

As reported by Jane’s All World’s Surface
Skimmers (1994) in accordance with the Aircraft
International Standards ‘‘...no special FAA certifi-
cate is required for operation of [Jörg’s] Flairboats
in any country’’. In connection with the Airfish, a
derivative of Dr. Alexander Lippisch’s Aerofoil
Boats, the same source stated that ‘‘... the vehicle
like a hovercraft, can be considered as a boat
thereby avoiding the necessity of applying aircraft
regulations and having a licensed pilot for its
operation’’.

The same considerations appeared to be applic-
able to small vehicles with a permanent power
augmentation feature (Volga-2, Amphistar, etc.),
which have a high degree of aerodynamic ‘‘binding’’
to the ground and can be steered by ship operators
without special pilot training. The WISES Marine
Slider m-Sky 2 was reported to have obtained a
Ship Inspection Certificate from the Japanese
Government.

In spite of these individual solutions of the
problem under discussion, there emerged an urgent
need for the establishment of internationally
recognized regulations concerning WIG effect
vehicles.

The traditional Russian approach has been to
design wingships as ships that fly and not as air-
craft that land on water. This approach avoids
the complexities of design and safety requirements
associated with aircraft certification. With this
philosophy, a 280 knot wingship can indeed
be considered the fastest type of marine craft
afloat. The combat ekranoplans were designed
according to the ‘‘design rules for combat surface
ships’’ for the modes preceding the takeoff. In flight
mode the ‘‘General specifications’’ for the develop-
ment of combat aircraft were taken into considera-
tion. The first large ekranoplans were impressive but
were subject to no regulation rules due to the fact
that they were developed and built for the purpose
of National Defense.
13.2. Some hydrofoil experience

Let us recall the situation with hydrofoil craft in
Russia. After having gained extensive experience in
the operation of the ‘‘Raketa’’ first hydrofoil motor
vessel, the designer, i.e. the CHDB, was ordered by
the Register of Shipping to develop a draft of a
supplement to the River Register Rules with
reference to hydrofoil craft. When the craft was
ready, the Register considered it and issued a
provisional supplement to the River Register Rules
with reference to the hydrofoil craft with some
changes and additions. Similar craft were designed,
built and operated using these provisional rules.
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Using this experience, the Register later developed
the final rules.

13.3. Progress in the development of regulations for

WIG effect vehicles

Perestroika and conversion started in Russia in
1985 and promoted the introduction of ekranoplans
as an alternative high-speed means of transporta-
tion. Subsequently, it became clear that commercial
operation of these vehicles moving with aircraft
speeds at sea level is impossible without national or
international rules that would guarantee safety of
their operation and establish a procedure for their
inspection. The issue of the Rules was raised for the
first time in 1991 by the leading experts of
the CHDB, named after R.E. Alexeev. But at that
time this appeal did not have adequate response in
the industry and the regulatory agencies. In 1992 the
Central Scientific Research Institute of the Ministry
of Maritime Fleet (CSRIMMF) carried out the first
attempt to certify commercial ekranoplans under
contract with CHDB.

The main achievement of this document was that
it had established the possibility to classify the
ekranoplan as a vessel on a dynamic air cushion
rather than as an aircraft. In particular, it was
indicated that the ekranoplan operates in the
environment of marine vehicles. It was shown that
the Russian ‘‘rules of provision of safety for
dynamically supported craft (DSC)’’ could, in
principle, be extended to the case of ekranoplans,
albeit with corresponding corrections and amend-
ments accounting for the particular features of WIG
effect vehicles.

Based on a thorough analysis of the situation, the
document stated the necessity and urgency of
including a section on ekranoplans into the IMO’s
Code of Safety for DSC Code. The corresponding
proposals on ekranoplans were included in the
document SLF 37/15/2, submitted by the Russian
Federation to the 37th Session (held on January
11–15, 1993) of the Sub-Committee on stability,
loading lines and safety of fishing vessels (SLF Sub-
Committee) under the heading ‘‘Revision of the
DSC Code’’ regarding stability. However, the SLF
Sub-Committee quite justly decided that the princi-
pal question of affiliation of ekranoplans with other
marine transports should be passed over to the
Sub-Committee on Design and Equipment (DE)
which was responsible for revision of the DSC Code
and development of a new High-Speed-Craft Code
(HSC Code) and recommended the Russian delega-
tion to submit the proposal to its 36th session. At
this session (held on February 22–26, 1993) the DE
Sub-Committee
�
 stated significant level of activity and positive
perspectives for the development of ekrano-
plans,

�
 agreed that ekranoplans should be considered as

marine vehicles whose operational issues lie
within the competence of the IMO,

�
 decided to include questions of safety require-

ments for ekranoplans in the IMO agenda
and their subsequent inclusion in the new
HSC Code or preparation of a separate IMO
document,

�
 recommended to the Sub-Committee on safety of

navigation (NAV Sub-Committee) to consider
navigational aspects for ekranoplans,

�
 suggested to establish a joint IMO/ICAO work-

ing group with the goal to consider legal and
navigational aspects of ekranoplans,

�
 formed a correspondence group for the develop-

ment of the requirements on safety of ekrano-
plans, entrusting the Russian Federation with
coordination of this work (Note that in 1998 the
Ministry of Transport of the Russian Federation
proposed the Russian Maritime Register of
Shipping to lead the correspondence group).

These decisions were adopted at the 62nd Session
of the Maritime Safety Committee (MSC 62/
WP.10). Thus, in 1993 the IMO made a historic
step, having recognized ekranoplans as marine
vehicles. With participation of CSRIMMF, JSC
‘‘Technologies & Transport’’ and foreign members
of the correspondence group ( representing ICAO,
Germany, Australia, Canada, France, Korea, China
Japan, UK, Hong-Kong and other countries) the
Russian Maritime Register of Shipping prepared a
draft of the International Code for Safety of
Ekranoplans developed on the basis of the Interna-
tional HSC Code and applicable civil aviation
(ICAO) requirements and submitted this document
to the 42nd Session of DE Sub-Committee. The
work initiated at the 36th Session of the DE Sub-
Committee in 1993 was completed at its 45th
Session in 2002 with acceptance of the ‘‘Interim
Guidelines for Wing-In-Ground (WIG) Craft’’.
The agenda item initially titled ‘‘development of
the requirements for ekranoplans’’, but later the
term ‘‘ekranoplan’’ was replaced by ‘‘WIG craft’’.



ARTICLE IN PRESS
K.V. Rozhdestvensky / Progress in Aerospace Sciences 42 (2006) 211–283260
13.4. Main features of the ‘‘Interim Guidelines for

Wing-In-Ground (WIG) Craft’’

In these Guidelines a WIG craft is defined as a
specific high-speed marine vehicle rather than as an
aircraft. The ICAO definition of aircraft is ‘‘any
machine that can derive support in the atmosphere
from the reactions of the air, other than reactions of
the air against the earth’s surface’’. The WIG Craft
is distinguished by employing (in the main mode of
operation) the interaction with the air reflected from
the earth’s surface. According to the concept
conceived by the Russian Federation, adopted by
IMO and coordinated by ICAO, the WIG Craft is a
vessel which is capable of flying (in contrast to the
aircraft as a flying machine capable of floating).

According to the Interim Guidelines:
�
 A’’WIG craft’’ is a multi-modal craft which, in the
main operational mode, flies by using the GE
above the water or some other surface, without
constant contact with such a surface and
supported in the air, mainly, by an aerodynamic
lift generated on a wing (wings), hull, or
their parts, which are intended to utilize the GE
action.

�
 ‘‘Ground effect’’ is the phenomenon of increase of

a lift force and reduction of induced drag of a
wing approaching a surface. The extent of this
phenomenon depends on the design of the craft
but generally occurs at an altitude less than the
mean chord length of the wing.

Very important for the goal of distinction
(sharing) of competence between IMO and ICAO
are provisions of the Guidelines categorizing WIG
craft according to the following types:
1.
 type A: a craft which is certified for operation in
GE;
2.
 type B: a craft which is certified to temporarily
increase its altitude to a limited height outside the
influence of GE but not exceeding 150m above
the surface; and
3.
 type C: a craft which is certified for operation
outside of GE and exceeding 150m above the
surface.
The Guidelines specify the following WIG craft

operational modes:
�
 ‘‘Amphibian mode’’ is the special short-term
mode of an amphibian WIG craft when it is
mainly supported by a static air cushion
and moves slowly above a surface other than
water;

�
 ‘‘Displacement mode’’ means the regime,

whether at rest or in motion, where the weight
of the craft is fully or predominantly supported
by hydrostatic forces

�
 ‘‘Transitional mode’’ denotes the transient mode

from the displacement mode to the step-taxi
mode and vice-versa;

�
 ‘‘Planing mode’’ denotes the mode of steady-state

operation of a craft on a water surface by which
the craft’s weight is supported mainly by hydro-
dynamic forces;

�
 ‘‘Takeoff/landing mode’’ denotes the transient

mode from the planing mode to the GE mode
and vice versa;

�
 ‘‘Ground effect mode’’ is the main steady-state

operational mode of flying the WIG craft in GE;

�
 ‘‘Fly-over mode’’ denotes increase of the flying

altitude for WIG craft of types B and C within a
limited period, which exceeds the vertical extent
of the GE but does not exceed the minimal safe
altitude for an aircraft prescribed by ICAO
provisions; and

�
 ‘‘Aircraft mode’’ denotes the flight of a WIG

craft of type C above the minimal safe altitude
for an aircraft prescribed by ICAO regulations.

The Guidelines emphasize significant differences
between WIG craft and high-speed craft, in
particular:
�
 substantially higher speeds of WIG craft and
consequently larger distances traveled in a given
time at operational speed;

�
 possibility of ‘‘amphibious’’ WIG craft being

operated from land base;

�
 need for risk and safety levels to be assessed on a

holistic basis, recognizing that high levels of
operator training, comprehensive and thoroughly
implemented procedures, high levels of automa-
tion and sophisticated software can all make
significant contributions to risk reduction;

�
 reduced ability of WIG craft to carry and deploy

equipment and systems traditionally associated
with seagoing craft;

�
 changed use of traditional ship terminology, such

as stability, for the safety of WIG craft in the
operational mode and corresponding increase in
the use of aviation terminology, such as controll-
ability; and
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�
 capacity of a WIG craft to mitigate hazards
associated with its airborne mode by its ability to
land on water at any time.

13.5. NAV Sub-Committee amendments to the

COLREGs-72

A number of relevant proposals were made by the
delegation of the Russian Federation to the NAV
Sub-Committee. The work of this Sub-Committee
under the agenda item ‘‘Operational aspects of WIG
craft’’ started at its 40th Session in 1995 and was
completed at its 46th session in 2000 with the
acceptance of the ‘‘Amendments to the interna-
tional regulations for preventing collisions at sea,
1972 (COLREGs-72)’’.

The most essential amendments read:
Rule 18:
(f) (i) A WIG craft when taking off, landing and

in flight near the surface shall keep well clear of all
other vessels and avoid impeding their navigation.

Rule 23:

(c) A WIG craft, only when taking off, landing
and in flight near the surface, shall, in addition to
the lights, prescribed in paragraph (a) of this Rule,
exhibit a high-intensity all-round flashing red light.

13.6. Emerging requirements on knowledge, skill and

training for officers on WIG craft

More attention has to be paid to the human
factors and the relevant requirements to training
and improving the qualification of the crew of a
WIG craft. To this end in 2002 Australia and the
Russian Federation addressed the Marine Safety
Committee with a substantiated proposal (MSC 76/
20/6) that the Sub-Committee on Standards for
Training and Watch Keeping (STW) be entrusted to
consider the issue ‘‘Requirements for knowledge,
skills and training for officers on WIG craft’’. The
Committee took a positive decision which was
included in the agenda of the STW Sub-Committee.

13.7. First rules of classification and safety for small

commercial ekranoplan

In the meantime the work on development,
construction and testing of the first of the A-class
commercial ekranoplan ‘‘Amphistar’’ had been
completed, the vehicle being ready for subsequent
serial construction and commercial operation.
However, to have the legal right to such an operation
the craft had to pass a special survey and be certified,
i.e. to have a legal confirmation that it had been
designed, constructed and equipped according to
Rules in force. Therefore a question of paramount
importance emerged: How to certify ‘‘Amphistar’’?
Thanks to the consolidation of efforts of the leading
organizations of the Russian Federation and a
decision taken by the Russian Maritime Register of
Shipping to develop a normative basis for such type
of craft, the ‘‘Temporary Rules of Classification and
Safety for a Type ‘A’ Small Ekranoplan’’ appeared
first in 1997, developed by the Central Scientific
Research Institute of Maritime Fleet on the order
and with direct participation of ‘‘Technology and
Transport Ltd’’. One year later (in 1998) these
Temporary Rules, after extensive discussions and
corrections by the participating organizations and
thorough consideration by the Russian Maritime
Register of Shipping, were transformed into the
‘‘Rules of Classification and Construction of Type
‘A’ Small Ekranoplans’’. These Rules were adopted
on January 1, 1999.

The Rules were developed on the basis of ‘‘Rules
of classification and construction of sea ships of
1995’’, ‘‘Rules on the equipment of sea ships of
1995’’, ‘‘Rules of safety of craft with dynamic
principles of support’’, ‘‘Technical requirements for
small ships of the Ministry of Marine Fleet at
realization of technical supervision of 1988’’, ‘‘Inter-
national code of safety adopted by IMO resolution
MSC (36) 63 of May 20, 1994’’ and ‘‘Basic provisions
of the draft of the International Code of Safety for
WIG craft (IMO document, DE 40/11/1)’’.

According to the definitions of the Rules: A type
‘‘A’’ small ekranoplan is a high-speed craft, which,
when in the main operational mode (surface effect)
is supported by the lift developing on an air
wing (wings), using the aerodynamic influence of
affinity of the water surface or other supporting
surface (surface effect) and not intended for
operation outside of the ‘‘surface effect’’ action
altitude.

The Rules apply to vehicles which
�
 have engine power not exceeding 55 kW,

�
 carry not more than 12 passengers (seats only),

�
 operate no farther than 20 miles away from the

shore and not farther than 100 miles from the
place of refuge,

�
 operate only during day light time,

�
 have a maximum operational weight not exceed-

ing 10 tons.
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Thus, the work of the IMO corresponding group
on the development of the requirements for

ekranoplans was completed successfully, and re-
sulted in the creation of the international normative
base for design, construction and operation of
ekranoplans.
14. Conclusions

The analysis of the existing information on WIG
effect vehicles leads to several important conclu-
sions based on the past immense worldwide
engineering effort, with invaluable contributions
and experience coming from Russian developments
associated with Rostislav Alexeev and his followers.
14.1. Technical feasibility

Technical feasibility of WIG effect vehicles
(possibility to develop lifting systems taking advan-
tage of GE and able to perform stable flight in
proximity to an underlying surface) has been proven
both through model experiments and full size trials
of prototypes.
14.2. Technical problems

The most important technical problems related to
the development of WIG effect vehicles are well
understood and have either been or can be solved.
In particular, methods have been developed to
provide static longitudinal stability, the issue which
was hampering the development of the GE technol-
ogy in its early days. Various liftoff aids have been
developed and validated to minimize the power
required for taking off the WIG effect craft, power
augmentation being one of the most significant
achievements in this area.
14.3. Aerodynamic configurations

Different aerodynamic configurations have been
developed and examined, each of them showing
advantages and disadvantages from the viewpoint
of specific applications. A tendency is observed for
configurations to evolve into all-wing (flying wing)
or composite wing schemes, the latter being
particularly advantageous from the viewpoint of
efficient takeoff, aerodynamic (economic) viability
in cruise and wider range of pitch stability.
14.4. Final conclusion

Whereas the early GE technology was largely
associated with naval applications, today new
horizons are appearing for a profound commercia-
lization of this fast sea transport alternative. The
necessary prerequisite for making this process more
efficient is the further development, elaboration and
international proliferation of Rules of Classification
and Safety for WIG effect vehicles. Compared to
the time of emergence of the technology, today there
exist many new possibilities (new materials, digital
automatic control systems, etc.) of making these
vehicles safer and more commercially viable.
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